期刊文献+

IFF算法求解顺序依赖的单机总权重拖期调度问题

IFF algorithm for the single machine total weighted tardiness scheduling problem with sequence dependent setup times
原文传递
导出
摘要 转换(启动)时间是工业中带有清洗、更换物料工序的生产过程所需要的,该时间一般很大程度上依赖于紧接工序.这种环境下的调度问题都是工件顺序依赖的.本文研究顺序依赖的单机总权重拖期调度问题,为NP难的组合优化问题.针对该问题.提出了一种迭代的过滤-扇出算法(IFF).算法以分支树的结构形式在解空间中搜索.在算法中.当分支移动不能改进根节点时,重新产生有继承性的根节点,使得算法继续进行.根据问题特性,提出了带序列片段重组和参考局部搜索的分支移动策略,获得分支节点.对文献中的120组数据的算法测试结果表明:对大多数实例.IFF算法的计算结果优于或不劣于DE算法和DPSO算法的计算结果,同时改进了42个实例的最好解. Setup (changeover) time is needed by the processes with cleaning or changing fixtures operations, which is strongly dependent on the immediately succeeding operation. The scheduling problems in this environment are sequence-dependent. This paper focuses on the single machine scheduling problem with sequence dependent setup times to minimize the total weighted tardiness, which is NP-hard. An iterated filter-and-fan algorithm (IFF) is proposed to solve it, which searches the solution space as a manner of a branch tree. In this algorithm, when the branching moves cannot improve the root solution, a new root solution with inherited features is generated, from which the search continues to work. According to the solution characteristic of the problem, a branching move strategy with sequence segment recomposing and referenced local search is proposed to generate branch nodes. The algorithm is tested by 120 instances from literature. The results show the solutions obtained by the IFF algorithm are better or not worse than those obtained by DE and DPSO algorithm for most instances. Besides, the best solutions for 42 instances are improved by the IFF algorithm.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第12期2802-2808,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60805053 60835001) 教育部博士点新教师基金(200805611065) 中央高校业务经费专项资金
关键词 迭代过滤-扇出算法 单机总权重拖期调度问题 启动时间顺序依赖 iterated filter-and-fan algorithm single machine total weighted tardiness scheduling problem sequence-dependent setup times
  • 相关文献

参考文献13

  • 1Pinedo M. Scheduling: Theory, Algorithms and Systems[M]. 2nd ed. Prentice-hall, Inc, 2000.
  • 2Lee Y H, Bhaskaran K, Pinedo M. A heuristic to minimize the total weighted tardiness with sequence-dependent setups[J]. IIE Transactions, 1997, 29: 45-52.
  • 3Lin S W, Ying K C. Solving single-machine total weighted tardiness problems with sequence-dependent setup times by meta-heuristics[J]. International Journal of Advanced Manufacturing Technology, 2007, 34:1183 -1190.
  • 4Liao C J, Juan H C. An ant colony optimization for single machine tardiness scheduling with sequence dependent setups[J]. Computers & Operations Research, 2007, 34:1899- 1909.
  • 5Anghinolfi D, Paolucci M. A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times[J]. European Journal of Operational Research, 2009, 193:73- 85.
  • 6Tasgetiren M F, Pan Q K, Liang Y C. A discrete differential evolution algorithm for the single machine total weighted tardiness problem with sequence dependent setup times[J]. Computers Operations Research, 2009, 36: 1900-1915.
  • 7Glover F, Rego C. Ejection chain and filter-and-fan methods in combinational optimization[J]. 4OR, 2006, 4: 263- 296.
  • 8Greistorfer P, Rego C. A simple filter-and fan approach to the facility location problem[J]. Computers & Operations Research, 2006, 33: 2590-2601.
  • 9Cicirello V A. Weighted tardiness scheduling with sequence-dependent setups: A benchmark library[R]. Technical Report, Intelligent Coordination and Logistics Laboratory, Robotics Institute, Carnegie Mellon University, USA, 2003.
  • 10Glover F, Gutin G, Yeo A, et al. Construction heuristics for the asymmetric TSP[J]. European Journal of Operational Research, 2001, 129: 555-568.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部