期刊文献+

基于边界矩和改进FCM聚类的水下目标识别 被引量:7

Underwater targets recognition based on contour moment and modified FCM algorithm
原文传递
导出
摘要 水下目标的识别是水下机器人对环境动态感知、快速定位与跟踪视觉目标的关键,本文针对水下成像的特殊性以及成像环境的复杂性,旨在设计一种快速、准确的目标识别系统以指导水下机器人进行下一步的任务.首先,综合运用一些流行的算法,简要介绍了一种有效的边界分割算法;然后通过对边界矩的分析和修正,构造了具有平移、旋转及比例变换不变性的仿射变换;最后详细描述了改进的FCM聚类识别的设计理念.通过对实测的4类物体组成的水下目标的识别实验,证明了所提水下目标识别系统可以用于水下目标识别,并且具有较高的鲁棒性和实时性. The underwater targets recognition is the key to the dynamic perception of the environment, fast location and visual target tracking of autonomous underwater vehicle (AUV). To eliminate the negative effects, which are brought by the particularity and complexity of imaging environment, this paper presents a rapid and accurate target recognition system for AUV to use the obtained result for the next task. Firstly, an efficient contour segmentation algorithm is given by the integrated application of some popular algorithm. Secondly, affine transformation invariants which is constant to image translation, rotation and scaling are constructed through the analysis and modification of the contour moment. Lastly, the design idea of a modified FCM clustering recognition is discussed in detail. Experiments of underwater target recognition are made on four types of actual targets prove that the recognition system can be applied to underwater object detection and have the relatively high robustness and real-time effectiveness.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第12期2809-2815,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(50909025) 水下智能机器人技术国防重点实验室开放课题研究基金(2008003)
关键词 水下机器人 目标识别 边界分割 边界矩 FCM聚类 鲁棒性 实时性 autonomous underwater vehicle (AUV) targets recognition contour segmentation contour moment fuzzy C-means robustness real-time effectiveness
  • 相关文献

参考文献21

  • 1徐玉如,肖坤.智能海洋机器人技术进展[J].自动化学报,2007,33(5):518-521. 被引量:52
  • 2Rodtook A, Makhanov S S. Selection of multi-resolution rotationally invariant moments for image recognition[J]. Mathematics and Computers in Simulation, 2009, 79(8): 2458-2475.
  • 3潘泉,程咏梅,杜亚娟,张洪才.离散不变矩算法及其在目标识别中的应用[J].电子与信息学报,2001,23(1):30-36. 被引量:38
  • 4Xu D, Li H. Geometric moment invariants[J]. Pattern Recognition, 2008, 41(1): 240- 249.
  • 5Papakostas G A, Karakasis E G, Koulouriotis D E. Novel moment invariants for improved classification perfor- mance in computer vision applications[J]. Pattern Recognition, 2010, 43(1): 58-68.
  • 6Hu M K. Visual pattern recognition by moment invariant[J]. IEEE Transactions on Information Theory, 1962, 2(8): 179-187.
  • 7Wong Y R. Scene matching with invariant moments[J]. Computer Grahpics and Image Proeessing, 1978, 8: 16- 24.
  • 8Chen C C. Improved moment invariants for shape discrimination[J]. Pattern Recognition, 1993, 26(5): 683 -686.
  • 9Dogantekin E, Yilmaz M, Dogantekin A, et M. A robust technique based on invariant moments -- ANFIS for recognition of human parasite eggs in microscopic images[J]. Expert Systems with Applications, 2008, 35(3): 728 -738.
  • 10Zhang F, Liu S Q, Wang D B, et al. Aircraft recognition in infrared image using wavelet moment invariants[J]. Image and Vision Computing, 2009, 27(4): 313- 318.

二级参考文献34

  • 1刘进,张天序.图像不变矩的推广[J].计算机学报,2004,27(5):668-674. 被引量:47
  • 2赵加敏,徐玉如,雷磊.用于水下机器人智能路径规划的仿真器的建立[J].系统仿真学报,2004,16(11):2448-2450. 被引量:12
  • 3李晔,庞永杰,万磊,常文田,梁霄.水下机器人S面控制器的免疫遗传算法优化[J].哈尔滨工程大学学报,2006,27(B07):324-330. 被引量:12
  • 4沈请.模式识别导论(第1版)[M].长沙:国防科技大学出版社,1991.110-112.
  • 5Kia C, Arshad M R. Robotics vision-based heuristic reasoning for underwater target tracking and navigation[J]. International Journal of Advanced Robotic Systems, 2005, 2(3): 245-250.
  • 6Cufi X, Garcia R, Ridao E An approach to vision-based station keeping for an unmanned underwater vehicle[A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C], Piscataway, NJ, USA: IEEE, 2002. 799-804.
  • 7Balasuriya A, Ura T. Vision-based underwater cable detection and following using AUVs[A]. Proceedings of the Oceans 2002 Conference and Exhibition[C]. Piscataway, NJ, USA: IEEE, 2002. 1582-1587.
  • 8Yap P T, Paramesran R, Ong S H. Image analysis by krawtchouk moments[J]. IEEE Transactions on Image Processing, 2003, 12(11): 1367-1377.
  • 9Hu M K. Visual-pattern recognition by moment invariants[J]. IRE Transactions on Information Theory,1962, 8(2): 179-187.
  • 10Mao K Z, Tan K C, Ser W. Probabilistic neural-network structure determination for pattern classification[J]. IEEE Transactions on Neural Networks, 2000, 11(4): 1009-1016.

共引文献114

同被引文献58

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部