期刊文献+

响应面法在催化湿式氧化降解异佛尔酮中的应用 被引量:3

Application of response surface method in the degradation of isophorone by catalytic wet air oxidation
下载PDF
导出
摘要 以Ru/TiZrO2为催化剂,采用催化湿式氧化法降解异佛尔酮废水,选择反应温度、氧气分压、反应时间、催化剂用量、初始pH为影响因素,以TOC去除率为响应值,采用响应面法研究影响因素及其交互作用对响应值的影响,建立二次多项式回归方程模型,并采用后退回归法进行模型精简.结果表明,反应时间和反应温度及其交互作用对TOC去除率影响极显著(P≤0.01);反应时间的二次项对TOC去除率影响显著(P≤0.05).随着反应温度的升高和反应时间的延长,TOC去除率逐渐提高.最后对模型进行验证,实验值与预测值具有很好的一致性,说明模型具有可靠的预测性,将该模型应用到催化湿式氧化中合理可行.质谱和离子色谱检测到异佛尔酮的降解产物主要为有机酮与小分子羧酸,由此提出对反应机理和降解途径的假设. Ru/TiZrO2 catalyst was applied in the degradation of isophorone by catalytic wet air oxidation. Reaction t dosage and initial pH were chosen as factors and TOC removal was fixed as response value. The response surface method was applied to analyze the effect of these factors and their interactions on the response value. The quadratic regression model was established and refined by backward regression method. The results showed that TOC removal was significantly affected (P≤0.01 ) by reaction time, temperature and their interactions, and affected (P≤0.05) by the square of reaction time. TOC removal rate increased with reaction temperature, and reaction time. Finally, the model was verified by three experiments. The experimental values and the predicted values had good agreement, indicating the model was reliable and can be applied in the CWAO. The degradation intermediates of isophorone by catalytic wet air oxidation were determined by GC-MS and ion chromatography, which demonstrated that the main degradation products were organic ketones and small molecule carboxylic acids. A hypothesis of degradation mechanism and pathway was proposed.
出处 《环境化学》 CAS CSCD 北大核心 2012年第12期1865-1873,共9页 Environmental Chemistry
基金 国家高科技研究发展计划(863)项目(2009AA063903) 青年基金-博士科研探索课题(S2010144)资助
关键词 催化湿式氧化 异佛尔酮 响应面法 Ru TiZrO2 catalytic wet air oxidation, isophorone, response surface method, Ru/TiZrO2
  • 相关文献

参考文献24

  • 1叶启亮,周文勇,孙浩,房鼎业.异佛尔酮及氧化异佛尔酮合成工艺的研究进展[J].化工进展,2002,21(10):718-722. 被引量:19
  • 2PaganeUi S, Battois F, Marejetti M, et al. Rhodium catalyzed hydroformylation of β-isophorone: an unexpected result[J]. J Mol Catal A Chem, 2006, 246 (1/2) : 195-199.
  • 3Halligudi S B, Kalaraj N K, Desjpamde S S, et al. Kinetics of oxidation of β-isophorone to keto-isophorone catalyzed by manganese Schiff base complex using molecular oxygen[ J]. J Mol Catal A Chem, 2000, 157 (1/2) :9-14.
  • 4Mao J Y, Li N, Li H R, et al. Novel Schiff base complexes as catalysts in aerobic selective oxidation of beta-isophomne [ J ]. J Mol Catal A Chem, 2006, 258(1/2):178-184.
  • 5Fortuny A, Bengoa C, Font J, et al. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol - J-. Journal of Hazardous Materials, 1999, B 64(2) :181-193.
  • 6Hamoudi S, Sayari A, Belkacemi K, et al. Catalytic wet oxidation of phenol over Pt, Ag1-x MnO2/CeO2 catalysts [ J]. Catalysis Today, 2000, 62(4) : 379-388.
  • 7Liu W M, Hu Y Q, Tu S T. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent [ J ]. Journal of Hazardous Materials, 201 O, 179 ( 1/3 ) : 545 -551.
  • 8Zhao S, Wang X H, Huo M X. Catalytic wet air oxidation of phenol with air and micellar molybdoyanadophosphoric polyoxometalates under room condition[ J ]. Applied Catalysis B-Environmental, 2010, 97 (1/2) : 127-134.
  • 9Grosjean N, Descorme C, Besson M. Catalytic wet air oxidation of N, N-dimethylformamide aqueous solutions : Deactivation of TiO2 and ZrO2-supported noble metal catalysts[ J-. Applied Catalysis B-Environmental, 2010, 97 (1/2) : 276-283.
  • 10Kim K, Ihm S. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review [ J]. Journal of Hazardous Materials, 2011, 186 ( 1 ) :16-34.

二级参考文献6

共引文献18

同被引文献41

  • 1王璐.我国煤化工产业的技术发展现状[J].煤炭与化工,2013,36(7):138-140. 被引量:7
  • 2毛景文,陈毓川,周剑雄,杨百川.四川省石棉县大水沟碲矿床地质、矿物学和地球化学[J].地球学报(中国地质科学院院报),1995,16(3):276-290. 被引量:20
  • 3Velasquez M, Paola S I, Contreras David R, et al. Oxidative degradation of sulfathiazole by Fenton and photo-Fenton reactions[ J . Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(6) : 661-670.
  • 4Xu X C, Zhang H T, Dong Z Y, et al. Pretreatment of old-age landfill leachate by microwave-assisted catalytic oxidation in the presence of activated carbon [ J ]. Environmental Technology, 2013, 34 (20) : 2857- 2862.
  • 5Zhao J, Yang J J, Ma J. Mn( II ) -enhanced oxidation of benzoic acid by Fe( 111 )/H202 system[J]. Chemical Engineering Journal, 2014, 239:171-177.
  • 6Fei X N, Li W Q, Cao L Y, et al. Degradation of bromamine acid by a heterogeneous Fenton-like catalyst Fe/Mn supported on sepiolite [ J ]. Desalination and Water Treatment, 2013, 51 (22/24) : 4750- 4757.
  • 7Hang, X L, He Z, Wei G L, et al. The distinct effects of Mn substitution on the reactivity of magnetite in heterogeneous Fenton reaction and Pb( II ) adsorption[ J]. Journal of colloid and interface science, 2014, 426: 181-189.
  • 8Carvalho H W P, Hammer P, Pulcinelli S, H, et al. Improvement of the photocatalytic activity of magnetite by Mn-incorporation [ J ]. Materials Science and Engineering B-Advanced Functional Sdid-State Materials, 2014, 181 : 64-69.
  • 9Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis[J]. Carbon, 1998, 36(3) : 159-175.
  • 10Yip A C K, Lam F L Y, Hu X J.Chemical-vapor-deposited copper on acid-activated bentonite clay as an applicable heterogeneous catalyst for the photo-Fenton-like oxidation of textile organic pollutants [ J]. Industrial & Engineering Chemistry Research, 2005, 44 (21): 7983 - 7990.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部