期刊文献+

非完整系统动力学仿真θ_1方法研究

RESEARCH ON θ_1 METHOD FOR DYNAMICS SIMULATION OF NON-HOLONOMIC SYSTEMS
原文传递
导出
摘要 θ1方法是一种直接时间积分算法,主要用于结构动力学仿真时运动方程的求解,方程形式为二阶常微分方程(ODEs)。对于非完整系统动力学仿真,从微分-代数方程(DAEs)的角度看,系统的运动方程是二阶DAEs。基于此,提出非完整系统仿真的θ1方法,也就是数值求解指标-2的运动方程—DAEs的新算法。通过对双轮机器人θ1方法仿真结果与DASSL和Radau5算法结果的比较,验证新算法的有效性。数值实验也说明θ1方法求解非完整系统DAEs时具有2阶精度。 The θ1 method is a direct-time integration method, which is used for the numerical integration of equations of motion in structural dynamics. The equations are second order ordinary differential equations (ODEs). In the viewpoint of differential-algebraic equations (DAEs), motion equations in non-holonomic systems are second order, too. Then θ1 method is extended and a new numerical method for the equations of motion in the non-holonomic systems is presented, while the equations are index-2 DAEs. The simulation for a two-wheeled robot by θ1 method is carried out, and the method is validated by comparing the solution with DASSL and Radau5. In addition, the numerical experiment also illustrates the second-order accuracy ofθ1method for DAEs in non-holonomic systems.
出处 《工程力学》 EI CSCD 北大核心 2012年第12期40-44,共5页 Engineering Mechanics
基金 中央高校基本科研业务费专项资金项目(XDJK2009C009) 西南大学博士基金项目(SWU109048)
关键词 θ1方法 非完整系统 动力学仿真 微分-代数方程(DAEs) 2阶精度 θ1method non-holonomic system dynamics simulation differential-algebraic equations (DAEs) second-order accuracy
  • 相关文献

参考文献17

  • 1彭慧莲,郭易圆,王琪.用第一类Lagrange方程求解平面多体系统约束力的方法[J].工程力学,2008,25(12):65-71. 被引量:8
  • 2王琪,陆启韶.多体系统Lagrange方程数值算法的研究进展[J].力学进展,2001,31(1):9-17. 被引量:24
  • 3Evensberget D F. Numerical simulation of non- holonomic dynamics [D]. Trondheim: Norwegian University of Science and Technology, 2006:11 - 12.
  • 4Rabier P J, Rheinboldt W C. Nonholonomic motion of rigid mechanical systems from a DAE viewpoint [M]. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2000: 9-14, 109-132.
  • 5Bauchau O A, Laulusa A. Review of contemporary approaches for constraint enforcement in multibody systems [J]. ASME Journal of Computational and Nonlinear Dynamics, 2008, 3(1): 011005.
  • 6潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 7Brenan K E, Campbell S L, Petzold L R. Numerical solution of initial-value problems in differential algebraic equations [M]. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 1996:41 - 108.
  • 8Newmark N. A method of computation for structural dynamics [J]. Journal of the Engineering Mechanics Division, ASCE, 1959, 85: 67-94.
  • 9Ching F T. Numerical dissipation in time-step integration algorithms for structural dynamic analysis [J]. Progress in Structural Engineering and Materials, 2003(5): 167-180.
  • 10Hoff C, Pahl P J. Development of an implicit method with numerical dissipation form a generalized single-step algorithm for structural dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 67: 367- 385.

二级参考文献20

  • 1陆佑方,冯冠民,王彬,齐朝晖.柔性多体系统动力学─—理论和应用力学的一个活跃领域[J].力学与实践,1994,16(2):1-9. 被引量:12
  • 2潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 3王琪,黄克累,陆启韶.树形多体系统动力学的隐式数值算法[J].力学学报,1996,28(6):717-725. 被引量:9
  • 4Schiehlen W. Multi-body system dynamics: roots and perspectives [J]. Multibody System Dynamics, 1997, 1: 149--188.
  • 5Brogliato B, Ten Dam A A, Paoli L, Genot F, Abadie M. Numerical simulation of finite dimensional multi-body non-smooth mechanical systems [J]. Applied Mechanics Reviews, 2002, 55(2): 107--150.
  • 6Werner Schiehlen, Nils Guse, Robert Seifried. Multi-body dynamics in computational mechanics and engineering applications [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 5509--5522.
  • 7Klepp HJ. Cases with several and with no solutions of the initial value problem and the corresponding states of sys- tems with friction-affected constraints [J]. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2003, 217 (1): 51--61.
  • 8Bayo E. An efficient computional method for real time multibody dynamic simulation in fully Cartesian coordinates [J]. Computer Methods in Applied Mechanical Engineering, 1991, 92: 377--395.
  • 9洪嘉振,力学进展,1989年,19卷,2期,205页
  • 10Liang C G,J Mech Trans & Auto in Design,1987年,109卷,405页

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部