期刊文献+

单源随机向量及其在随机分析中的应用 被引量:3

MONOPHYLETIC RANDOM VECTOR AND ITS APPLICATION IN STOCHASTIC ANALYSIS
原文传递
导出
摘要 受正交展开思想的启发,定义了单源随机向量,证明了该文提出的单源随机向量的独立性,并就单源随机向量在随机分析中的应用进行了阐述,算例计算表明了这种单源分析方法的有效性。用单源随机向量表达复杂的随机系统,仅需1个基本随机变量,这对大幅减少随机分析的难度和计算量有重要意义,对基于相关理论的随机分析,如随机结构、随机场、随机过程以及复合随机问题,该方法都有应用价值。随机系统用单源随机向量模拟以后,相应的分析方法还有待进一步深入研究。 Inspired by the thought of an orthogonal expansion, this paper defines a new concept of a monophyletic random vector, proves the independence of its members, and introduces its application in stochastic analysis. An example calculation shows the effectiveness of the monophyletic analysis method (MAM). By use of the monophyletic random vector, only one basic random variable is needed to express a complicated stochastic system. This method will sharply reduce the difficulties of analysis and calculation, and can be applied in the stochastic analysis based on the correlation theory, such as a random structure, a random field, a stochastic process and a composite stochastic question. After simulating a stochastic system with the use of a monophyletic random vector, the analysis methods corresponding to MAM must be further researched.
作者 汤保新
出处 《工程力学》 EI CSCD 北大核心 2012年第12期51-55,共5页 Engineering Mechanics
关键词 随机向量 随机分析 单源分析法 单源 独立性 random vector stochastic analysis monophyletic analysis method monophyletic independence
  • 相关文献

参考文献16

  • 1Housner G W. Characteristics of strong-motion earthquakes [J]. Bulletin of the Seismological Society of America, 1947, 37(1): 19-27.
  • 2Douglas J, Aochi H. A survey of techniques for predicting earthquake ground motions for engineering purposes [J]. Surveys in Geophysics, 2008, 29: 187- 220.
  • 3Astill C J, Noisseir S B, Shinozuka M. Impact loading on structures with random properties [J]. Journal of Structural Mechanics, 1972, 1(1): 63-77.
  • 4Shinozuka M, Jan C M. Digital simulation of random processes and its applications [J]. Journal of Sound and Vibration, 1972, 29:111 - 128.
  • 5Shinozuka M, Lenoe E. A probabilistic model for spatial distribution of material properties [J]. Engineering Fracture Mechanics, 1976, 8(1): 217-227.
  • 6Sun T C. A finite element method for random differential equations with random coefficients [J]. SIAM, Journal on Numerical Analysis, 1979, 16(6): 1019-1035.
  • 7Loeve M. Probability theory Ⅱ [M]. 4th ed. Berlin: Springer-Verlag, 1977: 121- 159.
  • 8Zhang J, Ellingwood B. Orthogonal series expansions of random fields in reliability analysis [J]. Journal of Engineering Mechanics, 1994, 120(12): 2660-2677.
  • 9刘天云,伍朝晖,赵国藩.随机场的投影展开法[J].计算力学学报,1997,14(4):484-489. 被引量:6
  • 10Li Jie, Roberts J B. An expanded order system method for the combined random vibration analysis [R]. Research Report No.4 in University of Sussex, Brighton, 1993.

二级参考文献37

  • 1杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动,1994,14(4):1-5. 被引量:85
  • 2李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:35
  • 3Li Jie, Chen Jianbing. Stochastic Dynamics of Structures[M]. Singapore: John Wiley & Sons Pte Ltd, 2009.
  • 4Li Hongiing, Sun Guangiun. A Correlation Function Model to Earthquake-induced Ground Motion Process with a Modified Kanai-Tajimi Spectrum[C]//The Ninth International Symposium on Structural Engineering for Young Experts. Fuzhou: [ s. n. ] ,2006:2151-2157.
  • 5Li J, Chen J B. The Number Theoretical Method in Response Analysis of Nonlinear Stochastic Structures[J ]. Computational Mechanics, 2007, 39(6): 693-708.
  • 6刘宁,力学进展,1995年,25卷,116页
  • 7Zhang J,J Eng Mech,1994年,120卷,2660页
  • 8秦权,工程力学,1994年,1页
  • 9Li C C,J Eng Mech,1993年,119卷,1136页
  • 10陈--,随机有限元法及其工程应用,1993年

共引文献42

同被引文献31

  • 1李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:35
  • 2GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
  • 3Astir C J, N oisseir,S B & Shinozuka M. Impact loading on structures with random properties,J. Stuct. Mech., 1972(1).
  • 4Shinozuka M & Jan C M. Digital simulation of random processes and its apphcations,. Journal of Sound and Vibration, 1972.
  • 5Shinozuka M & Lenoe E. A probabilistic model for spatial distribution of material properties[J]. Engrg. Fracture Mech., 1976(1).
  • 6Sun T C. A finite element method for random differential equations with random coefficients, SIAM, J. Numer. Anal., 1979(6).
  • 7Li Jie & Roberts J B. An expanded order system method for the combined random vibration analysis., Research Report No. 4 in Univ. of Sussex, Brighton, 1993.
  • 8Tang Baoxin, Cheng Kaihua, Li Qi. Simulating stochastic process with a monophyletic random vector [A].Sustainable Development of Urban Environment and Building Material[C]. Zurich-Dumten Switzerland: Tran Tech Publications, 2011.
  • 9Vanmarcke E H.Properties of spectral moments with applications to random vibration[J].Journal of the Engineering Mechanics Division,ASCE,1972,98(EM2):425―446.
  • 10Zhu W Q.Nonlinear stochastic dynamics and control in Hamiltonian formulation[J].Applied Mechanics Reviews,2006,59(4):230―248.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部