摘要
将用于损伤识别的静态位移曲率置信因子与人工神经网络技术相结合,建立了结构损伤识别的灰色网络系统。利用该系统对悬臂梁结构损伤位置和程度进行了识别分析和判断,可以看出,利用此方法对结构的损伤识别是非常有效的,且该方法不仅具有静态位移曲率置信因子计算简单、准确度高等优点,而且还具有神经网络高度并行运算能力和良好的的容错性。
Combining the static displacement curvature assurance coefficient used for damage identification with artificial neural network technology, the system of structural damage identification based on the grey network was set up. Using the system to judge the location and extent of structural damage on cantilever beam, it can be seen that this method is very effective, and the calculation on the static displacement curvature assurance coefficient is simple, the accuracy is high , and it also has a highly parallel computing power and good fault tolerance.
出处
《工业建筑》
CSCD
北大核心
2012年第12期126-128,138,共4页
Industrial Construction
关键词
损伤识别
静态位移曲率置信因子
人工神经网络
灰色网络
damage identification
static displacement curvature assurance coefficient
artificial neural networks
grey network