期刊文献+

基质诱导硝化测定的土壤中锌的毒性阈值、主控因子及预测模型研究 被引量:9

Toxicity Threshold of Zn and Its Predictable Models as Determined by Induced Nitrification in Soils
下载PDF
导出
摘要 选取我国有代表性的16种土壤,通过基质诱导硝化(SIN)的方法,研究了淋洗与未淋洗处理后,土壤中外源Zn对不同土壤潜在硝化速率(PNR)的影响。结果表明:在未淋洗处理土壤中Zn毒性的EC50(使PNR降低至对照一半土壤中Zn的浓度)值的范围为197~1874mg·kg-1,相差近9.51倍;总体而言,土壤pH、有机碳及粘粒含量的提高可以降低土壤中Zn的毒性。偏相关分析结果表明,影响土壤中Zn对潜在硝化速率抑制作用的主要因子依次为土壤pH、有机碳含量及粘粒含量;淋洗处理明显提高了土壤中外源Zn的毒性阈值浓度,在不同土壤中,淋洗因子(定义为淋洗后的土壤Zn毒性的EC50与非淋洗EC50的比值)范围为1.16~1.43;基于土壤主要性质的多元回归预测模型结果表明,利用土壤性状(pH、有机碳和粘粒含量)可以很好地预测土壤中Zn对硝化速率抑制的毒性阈值。 Sixteen different soils, representative of the soils in China, were selected for an experiment on measuring the toxicity of added Zn to potential nitrification rate (PNR) based on induced nitrification (SIN). The resuits showed that the toxicity threshold of ECs0(as defined as effective concentration of added Zn causing 50% inhibition) ranged from 197 to 1 874 mg ·kg-1 in unleached soils as determined by SIN test, with nearly 9.51-fold variation among the EC50. In general, the toxicity of Zn in soils could be decreased with increment of pH, organic carbon, and clay minerals of soils. The result of partial correlation analysis indicated that the main factors affecting the toxicity threshold of Zn in soils follow the order ofpH 〉organic carbon 〉clay content in soils as determined by SIN test. Leaching treatment can significantly increase the ECs0 in soils with the leaching factors (LF, defined as ratio of EC50 after leaching to the ECs0 ofunleached soils) ranged from 1.16 to 1.43. The developed regression model based on the main soil properties (i.e. pH, organic carbon, and clay mineral contents) can accurately predict the Zn toxicity in the soils as determined by SIN test in this study.
出处 《生态毒理学报》 CAS CSCD 北大核心 2012年第6期657-663,共7页 Asian Journal of Ecotoxicology
基金 国家自然科学基金项目(21077131) 农业部农业公益性行业专项(200903015和201103007)资助
关键词 ZN 潜在硝化速率 毒性阈值 预测模型 Zn potential nitrification rate, toxicity threshold, prediction models
  • 相关文献

参考文献21

  • 1Smolders E,Mcgrath S P,Lomb E,et al. Conparision oftoxicity of zinc for soil microbial processes between la-boratory-contaminated and polluted field soils [J]. En-vironmental Toxicity and Chemistry, 2003,22(11): 2592-2598.
  • 2Smolders E, Brans K, Coppens F, et al. Potential nitrifi-cation rate as a tool for screening toxicity in metal -contaminated soils [J]. Environmental Toxicology andChemistry,2001,20(11): 2469 - 2474.
  • 3Stuczynski T I,McCarty G W,Siebielec G. Response ofsoil microbiological activities to cadmium, lead,and zincsalt amendments [J]. Journal of Environmental Quality,2003,32(4): 1346 - 1355.
  • 4Damiano C, Edoardo P,Sotirios V,et al. Relative sensi-tivity of different soil biological properties to Zn [J].Soil Biology Biochemistry, 2011,43(9): 1798 - 1807.
  • 5Broos K, Mertens J, Smolders E. Toxicity of heavy met-als in soil assessed with various soil microbial andplant growth assays: As comparative study [J]. Envi-ronmental Toxicology and Chemistry, 2005,24(3): 634 -640.
  • 6Broos K, Wame M S T J, Heemsbergen D A, et al. Soilfactors controlling the toxicity of copper and zinc tomicrobial processes in Australian soils [J]. Environ-mental Toxicology and Chemistry, 2007,26(4): 583 - 590.
  • 7Smolders E, Buekers J,Oliver I,et al. Soil properties af-fecting toxicity of zinc to soil microbial properties in la-boratory-spiked and field contaminated soils [J]. Envi-ronmental Toxicology and Chemistry, 2004,23(11): 2633-2640.
  • 8夏月,朱永官.硝化作用作为生态毒性指标评价土壤重金属污染生态风险[J].生态毒理学报,2007,2(3):273-279. 被引量:16
  • 9Zarcinas B A, McLaughlin M J, Smart M K. The effectof acid digestion technique on the performance of neb-ulisation systems used in inductively coupled plasmaspectrometry [J]. Communications in Soil Science andPlant Analysis,1996,27(5/8): 1331 - 1354.
  • 10Oorts K, C2iesquiere U, Smolders E. Leaching and ag-ing decrease nickel toxicity to soil microbial processesin soils freshly spiked with nickel chloride [J]. Environ-ment Toxicology and Chemistry, 2007,26(6): 1130 - 1138.

二级参考文献14

  • 1刘志培,刘双江.硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报,2004,10(4):521-525. 被引量:79
  • 2王连峰,蔡祖聪.水分和温度对旱地红壤硝化活力和反硝化活力的影响[J].土壤,2004,36(5):543-546. 被引量:23
  • 3SalemHarry.Toxicology of low- level exposure:evidence forhormesis[].Journal of Applied Toxicology.2000
  • 4CavieresM F,JaegerJ,W Porter.Developmental toxicity of acommercial herbicide mixture in mice:I.Effects on embryo im-plantation and litter size[].EnvironmentalH ealthPerspectives.2002
  • 5StebbingA R D.Hormesis:interpreting theβ- curve using con-trol theory[].Journal of Applied Toxicology.2000
  • 6CalabreseE J,BaldwinL A.Evidence that hormesis repre-sents an"overcompensation"response to a disruption in home-ostasis[].Ecotoxicology andEnvironmentalSafety.1999
  • 7MorréD J.Chemical hormesis in cell growth:a moleculartargetat the cell surface[].Journal of Applied Toxicology.2000
  • 8Stebbing A R D.Tolerance and hormesis-increased resistance to copper in hydroids linked to hormesis[].Marine Environmental Research.2002
  • 9Stebbing A R D.Growth hormesis : a by-product of control[].Health Physics.1987
  • 10Stebbing ADR.Hormesis-the stimulation of growth by low levels of inhibitors[].Science of the Total Environment.1982

共引文献36

同被引文献196

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部