期刊文献+

冷却结构对连铸结晶器铜板热变形的影响 被引量:3

Effect of cooling structure on the deformation of copper plates for slab continuous casting molds
原文传递
导出
摘要 建立了板坯连铸结晶器三维有限元热弹塑性结构模型,计算了铜板变形及结晶器冷却结构对其影响规律.冷却结构和热力载荷决定了铜板热面变形行为,铜板变形量取决于冷却结构几何参数,并在铜镍分界处有较小变形突变;宽面热面中心线最大变形出现在弯月面下100mm处,窄面最大变形出现在弯月面和冷却水槽末端,且铜镍分界两侧变形曲线有明显的曲率波动;铜板加厚5 mm,最大中心线变形可增加0.05 mm,镍层对中心线变形影响不明显,1 mm的厚度变化仅在窄面引起最大0.01 mm的下降,冷却水槽对中心线变形影响也较小,水槽加深2 mm,最大中心线变形减少0.02 mm. A three-dimensional finite-element thermal-stress model of slab continuous casting molds was conducted to predict the deformation of copper plates and the effect of cooling structure on the deformation. It is found that the deformation behavior of copper plates is mainly governed by cooling structure and thermal-mechanical conditions, the deformation amount is related to the geometry of the cooling system, and a small deformation mutation oceurs in the copper-nickel boundary. The maximum deformation at the hot surface eentricity of the wide face locates at 100 mm below the meniseus, but that of the narrow face locates at the meniscus and the terminal of water slots. There are significant curvature fluctuations on both sides of the copper-nickel boundary of the narrow face. The maximum deformation at the hot surface centricity increases up to 0. 05 mm with a thickness increment of 5 mm for copper plates, and the impact is not obvious from the nickel layer and water slots; the maximum deformations are only depressed 0. 01 and 0. 02 mm with the increments of 1 mm nickel layer thickness and 2 mm water slot depth, respectively.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第12期1416-1420,共5页 Journal of University of Science and Technology Beijing
基金 国家杰出青年科学基金资助项目(50925415) 国家自然科学基金资助项目(51004031) 高等学校博士学科点专项科研基金资助项目(20100042120012) 中央高校基本科研业务费资助项目(N090402022)
关键词 连铸 结晶器 变形 热分析 有限元法 continuous casting molds deformation thermoanalysis finite element method
  • 相关文献

参考文献11

  • 1Thomas B G. Modeling of the continuous casting of steel: past, present, and future. Metall Mater Trans B, 2002, 33 (6) : 795.
  • 2Park J K, Thomas B G, Samarasekera I V, et al. Thermal and mechanical behavior of copper molds during thin-slab casting (Ⅱ): mold crack formation. Metall Mater Trans B, 2002, 33 (3) : 437.
  • 3Meng X N, Zhu M Y. Mechanism of explaining liquid friction and flux consumption daring non-sinusoidal oscillation in slab continuous casting mould. Can Metall Q, 2011,50( 1 ): 45.
  • 4Meng X, Zhu M. Optimisation of non-sinusoidal oscillation parameters for slab continuous casting mould with high casting speed. Ironmaking Steelmaking, 2009, 36(4): 300.
  • 5Meng Y, Thomas B G. Simulation of microstructure and behavior of interfacial mold slag layers in continuous casting of steel. ISIJ Int, 2006, 46 (5) : 660.
  • 6Marcandalli A, Mapelli C, Nicodemi W. A thermomechanical model for simulation of carbon steel solidification in mould in continuous casting. Ironmaking Steelmaking, 2003, 30(4): 265.
  • 7Li C, Thomas B G. Thermomechanical finite-element model of shell behavior in continuous casting of steel. MetaU Mater Trans B, 2004, 35(6) : 1151.
  • 8Thomas B G, Langeneckert M, Castella L, et al. Optimisation of narrow face water slot design for Siderar slab casting mould. Ironmaking Steelmaking, 2003, 30 (3) : 235.
  • 9Chow C, Samarasekera I V, Walker B N, et al. High speed continuous casting of steel billets part 2: mould heat transfer and mould design, lronmaking Steelmaking, 2002, 29(1): 61.
  • 10Park J K, Thomas B G, Samarasekera I V, et al. Thermal and mechanical behavior of copper molds during thin-slab casting (Ⅰ) : plant trial and mathematical modeling. Metall Mater Trans B, 2002, 33(3) : 425.

同被引文献18

引证文献3

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部