期刊文献+

基于扩展时间影响网络的作战任务效能计算方法 被引量:7

Calculation of operational task effectiveness based on extended timed influence nets
下载PDF
导出
摘要 由于战场环境的复杂性,作战任务与作战目标间通常存在动态不确定的因果影响关系。目前,传统的解析模型及作战模拟方法在计算作战任务效能时,存在因果建模能力不足,运行效率低下的问题。通过引入时间影响网络,并利用循环弧和强度参数扩展其时间约束,进一步表达了作战行动间异步和同步关系,提出了一种基于扩展时间影响网络的作战任务效能计算方法。在一定作战想定背景下,结合登岛作战任务示例验证了该方法的可行性和有效性。 Because of the complexity of battlefield environment, there exist many dynamic and uncertain causal relationships between operational task and goal. Currently, the traditional analytical model and combat simulation are not competent for causal modeling and efficient execution in calculating operational task effectiveness. Timed influence nets are introduced. The self loop and strength parameter are used to extend time con straints. So the asynchronous and synchronous relationships between combat actions can be expressed further.. A method of calculating operational task effectiveness based on extended timed influence nets is proposed. In a certain battle scenario, this calculation method is proved to be feasible and valid by a landing task.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第12期2492-2497,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(70971137)资助课题
关键词 时间影响网络 贝叶斯网络 作战行动 任务效能 timed influence nets Bayesian network combat action operational task effectiveness
  • 相关文献

参考文献16

  • 1Falzon L. Using Bayesian network analysis to support centre of gravity analysis in military planning[J]. European Journal of Operational Research, 2006, 170(2) : 629 - 643.
  • 2Chang K C, Lehner P E, Levis A H, et al. On causal influence logic[R]. George Mason University: Center of Excellence for C3I, 1994.
  • 3Rosen J A, Smith W L. Influence net modeling with causal strengths: an evolutionary approach[C]//Proc, of the Com- mand and Control Research and Technology Symposium, 1996: 699 - 708.
  • 4Wagenhals L W, Shin I, Levis A H. Creating executable models of influence nets with colored Petl'i nets[J]. International Jour- nal on Software Tools for Technology Transfer ( STTT), 1998, 2(2): 168-181.
  • 5Zaidi A K, Mansoor F, Papantoni Kazakos T P. Theory of in fluenee networks[J]..Journal of Intelligent and Robotic Sys- tems, 2010, 60(3-4): 457-491.
  • 6Zhu Y G, Lei Y L. Stochastic timed influence nets[C]//Proc. of the International Conference on Computer Application and System Modeling, 2010: 634 - 638.
  • 7朱延广,朱一凡,雷永林,曹星平.基于随机时间影响网络的联合火力打击方案评估[J].国防科技大学学报,2011,33(5):97-102. 被引量:7
  • 8Haider S. On finding effective course of action in dynamic uncer- tain situations[D]. Virginia: George Mason University, 2005.
  • 9Haider S, Levis A H. Modeling time-varying uncertain situa tions using dynamic influence nets[J]. International Journal of Approximate Reasoning, 2008, 49(2): 488- 502.
  • 10Papantoni-Kazakos T P, Zaidi A K, Rafi M F. An algorithm for activation timed influence nets[C]// Proc. of the IEEE In- ternational Conference on Information Reuse and Integration, 2008: 319-324.

二级参考文献34

共引文献11

同被引文献65

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部