期刊文献+

航空人-机复杂系统极值风险评估稳定性分析 被引量:2

Stability analysis of aeronautic man-machine complex system risk evaluation by extremum theory
下载PDF
导出
摘要 针对航空人-机复杂系统极值风险评估中存在不确定性、难于验证的理论问题,建立了综合考虑'物理特性'、'随机性'和'非线性'的驾驶员-飞机系统和故障数学模型,通过大量仿真数据分析样本数量、评估次数以及优化算法选取对评估稳定性的影响。为提高极值分布中样本数据序列的拟合精度,针对综合评估模型提出一种随机自适应进化粒子群算法(random adaptive evolutionary particle swarm optimization,RAE-PSO)算法,实现了收敛速度和拟合精度的提高。提出了提高航空人-机系统风险评估稳定性、降低评估误差的方法步骤,并通过案例验证了方法的有效性。 Risk evaluation of a man-machine complex system based on extremum theory is stochastic and is difficult to validate. A pilot-aircraft complex system and failure mathematical model considering physical, stochastic and nonlinear factors are established. The influences of extremum number, assessment time and fitting algorithm on evaluation stability are analyzed based on a large number of simulation tests. To improve the fitting precision of sample sequence in extremum distribution, a random adaptive evolutionary particle swarm optimization (RAE-PSO) algorithm is proposed based on the synthesis evaluation model. The results show that the random adaptive evolutionary particle swarm optimization algorithm has a better convergence and precision. The approach for improving evaluation stability and precision is proposed. Simulation results verify the effectiveness of the proposed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第12期2504-2508,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60572172 61074007)资助课题
关键词 人-机复杂系统 风险评估 稳定性 极值理论 粒子群优化 man-machine complex system risk evaluation stability extremum theory particle swarm optimization
  • 相关文献

参考文献13

  • 1Stelios D, Dimitris A. Estimation of value-at-risk by extreme value and conventional methods: a comparative evaluation of their predic- tive performance[J]. Journal of International Financial Markets, Institutions & Money, 2005,15 (3) :209 - 228.
  • 2Xu H J, Liu D L, Li D W. Research on airworthiness certifica tion method based on simulation of complex system and extreme value theory[C]// Proc. of the 1st International Symposium on Aircraft Airworthiness, 2009 : 468 - 474.
  • 3葛志浩,徐浩军,孟捷.一种基于最优化的极值分布建模方法[J].系统工程与电子技术,2007,29(11):1877-1879. 被引量:2
  • 4Rajabi M R, Modarres R. Extreme value frequency analysis of wind data from Isfahan[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96 ( 1 ) : 78 - 82.
  • 5Kam F C,Philip G. Using extreme value theory to measure val- ue at-risk for daily electricity spot prices[J]. International Jour hal of Forecasting, 2006,22(3): 283 - 300.
  • 6Crum V, Homan D, Bortner R. Certification challenges for au- tonomous flight control systems[C]//Proc, of the AIAA Gui dance, Navigation, and Control Conference and Exhibit, 2007: 2097-3001.
  • 7Brooks C, Clare A D, Dalle M J W. A comparison of extreme value theory approaches for determining value at risk[J]. Jour nal of Empirical Finance, 2005, 12 (1) : 339 - 352.
  • 8Alexander A, Lajos H B, Marie H. Extreme value theory for stochastic integrals of Legendre polynomials [J]. Journal of Multivariate Analysis, 2009,100(3) :1029 - 1043.
  • 9Srinivas M, Pamaik L M. Adaptive probabilties of crossover and mutatioain genetic aigoritlam[J]. IEEE Trans. on Sys- tems, Man and Cybernetics, 1994, 24(4) : 656 - 667.
  • 10Yu J B, Wang S J, Xi L F. Evolving artificial neural networks using an improved PSO and DPSO [J]. Neurocomputing, 2008,71(4): 1054- 1060.

二级参考文献28

  • 1詹原瑞,罗健宇.基于极值理论和Copula的灾难风险建模研究[J].哈尔滨商业大学学报(自然科学版),2005,21(1):113-116. 被引量:4
  • 2张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 3COELLO CA, PULIDO GT, LECHUGA MS. Handling Multiple Objectives with Particle Swarm Optimization [J]. IEEE Transaction Evolutionary Computation (S1089-778X), 2004, 8(3): 256-279.
  • 4SHI YH, EBERHART R. A Modified Particle Swarm Optimize [C]// Proc IEEE World Congress on Computation Intelligence, Piscataway, NJ, USA, 1998. USA, IEEE, 1998: 69-73.
  • 5SHI Y, EBERHART R. Empirical Study of Particle Swarm Optimization [C]// Proceedings of the 1999 congress on Evolutionary Computation. Piscataway, USA: IEEE, 1999: 1945-1950.
  • 6ZHANG LH, HU S. A New Approach to Improve Particle Swarm Optimization [C]// Lecture Notes in Computer Science, Chicago 2003, USA. Berlin, Germany: Springer-Verlag, 2003: 134-139.
  • 7EBERHART R, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]// Proceedings of the 2000 Congress on Evolutionary Computation. California, USA: IEEE Press, 2000: 84-88.
  • 8HIGASHI N, IBA H. Particle Swarm Optimization with Gaussian Mutation [C]// Proceedings of the IEEE Swarm Intelligence Symphosium 2003. Indiana, USA: IEEE Press, 2003: 72-79.
  • 9Stacey A, Jancic M, Grtmdy I. Particle Swarm Optimization with Mutation [C]// Proceedings of the 2003 Congress on Evolutionary Computation. Canberra, Australia: IEEE Press, 2003: 1425-1430.
  • 10LI N, QIN YQ, SUN DB, Zou T. Particle Swarm Optimization with Mutation Operator [C]// Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004. Piscataway, USA: IEEE, 2004:2251-2256.

共引文献9

同被引文献19

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部