期刊文献+

周期性运动物体的特征提取及其分类 被引量:1

Characteristics extraction and classification based on periodically moving object
下载PDF
导出
摘要 提出视频中周期性运动物体两种特征。第一种是通过傅里叶变换得到视频中周期性运动的频率。第二种是采用了一种基于行走模版的相似性度量作为人体运动的特征。通过支持向量机对六种行为特征进行分类实验检测,结果表明上述特征能够充分地表示视频中的行为,得到了较高的分类效果,而且该方法、简单快速。 Two kinds of characterisitics of the periodically moving object are proposed in video. The first one is the frequency by Fourier transform of the periodic motion video. The second is a similarity measure from a walking template-based as human motion characteristics. Through the support vector machine, six behavior characteristics of laboratory tests are classified. The results show that these characteristics can be fully expressed in the video acts, and have a higher classification, this method is also simple and fast.
出处 《计算机工程与应用》 CSCD 2012年第35期139-142,共4页 Computer Engineering and Applications
关键词 外接矩形长宽比 关键帧 频率 相似度 external rectangular aspect ratio keyframe frequency similarity
  • 相关文献

参考文献8

  • 1周巧云 于仕琪.运动人体行为分析.先进技术研究通报,2009,:47-51.
  • 2Zhang D,Daniel G P,Beng D S,et al.Semi-supervised adapted HMMs for unusual event detection[C]//Proceed-ings of the2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2005:611-618.
  • 3Wu X Y,Ou Y S,Qian H H,et al.A detection systemfor human abnormal behavior[C]//IEEE International Con-ference on Intelligent Robots and Systems.New York:IEEE Intelligent Robots and Systems,2005:1204-1208.
  • 4杨胜,钟玉琢.一种从MPEG压缩视频流中提取关键帧的方法[J].中国图象图形学报(A辑),2001,6(3):254-258. 被引量:21
  • 5印勇,张毅,刘丹平.基于改进Hu矩的异常行为识别[J].计算机技术与发展,2009,19(9):90-92. 被引量:8
  • 6Bose T.数字信号与图像处理[M].吴镇扬,周琳,译.北京:高等教育出版社,2006:119-129.
  • 7王威,张鹏,王润生,陈宜稳.行人行为的奇异性检测和正常行为分类[J].计算机工程与应用,2010,46(9):173-176. 被引量:4
  • 8Hsu C,Lin C.A comparison of methods for multiclass support vector machines[J].IEEE Trans on Neural Net-works,2002,13(2):415-425.

二级参考文献20

  • 1吕洪涛,周继成.离散状态下的不变矩算法研究[J].数据采集与处理,1993,8(2):151-155. 被引量:21
  • 2王陈阳,周明全,耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,17(4):21-23. 被引量:19
  • 3徐建华.图象处理与分析[M].北京:科学出版社,1992..
  • 4Li Y, Xu C J, Liu J Z. Detecting Irregularity in Video Using Kernel Estimation and K- D Trees[ C]//Proceedings of the 14th annual ACM international conference on Multimedia. New York:ACM press, 2006:639 - 642.
  • 5Zhou H,Kmber D. Unusual Event Detection Via Multi- camera Video Mining[C] #Proceedings of the 18th International Conference on Pattern Recognition- Volume 03. Washington, DC: IEEE Computer Society, 2006:1161 - 1166.
  • 6Zhang D, Daniel O P, Beng D S, et al. Semi - supervised Adapted HMMs for Unusual Event Detection[C]//Proceedings of the 2005 IEEE Computer Society Connference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005:611 - 618.
  • 7Wu X Y, Ou Y S, Qian H H, et al. A detection system for human Abnormal behavior[ C]//IEEE International Conference on Intelligent Robots and Systems. New York: IEEE Intelligent Robots and Systems, 2005 :1204 - 1208.
  • 8Foresti G L,M~ihsnen P,Regazzoni C S,et al.Multimedia video- based surveillance systems:Requirements,issues and solutions[M].Norwell, MA: Kluwer Academic Publishers, 2000.
  • 9Spirito M,Regazzoni C S,Marcenaro L.Automatic detection of dangerous events for underground surveillance[J].IEEE Conference on Advanced Video and Signal Based Surveillance,2005: 195-200.
  • 10Hawkins D.Identification of outliers[M].London:Chapman and Hall, 1980.

共引文献33

同被引文献16

  • 1Marilly E, Gonguet A, Martinot O, et al. Gesture interactions with video: from algorithms to user evaluation [ J ]. Bell Labs Technical Journal, 2013, 17(4): 103-118.
  • 2Liu Y, Zhang P. An automatic hand gesture recognition system based on Viola-Jones method and svms [ C ]//Proceedings of the 2009 Second International Workshop on Computer Science and Engineering. Qingdao, China: IEEE, 2009: 72-76.
  • 3Chen Q, Georganas N D, Petriu E M. Hand gesture recognition using Haar-Like features and a stochastic context-free grammar [ J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(8) : 1562-1571.
  • 4Su M C. A fuzzy rule-based approach to spatio-temporal hand gesture recognition [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2000, 30(2) : 276-281.
  • 5Zhao J L, Chen T D. An approach to dynamic gesture recognition for real-time interaction[ C ]//Proceedings of the Sixth Internal tional Symposium on Neural Networks. Berlin Heidelberg: Spring- er, 2009: 369-377.
  • 6Yao Y, Fu Y. Contour model-based hand-gesture recognition using the Kinect sensor[ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24 ( 11 ) : 1935-1944.
  • 7Ren Z, Yuan J S, Meng J J, et al. Robust part-based hand ges-. ture recognition using Kinect sensor [ J ]. IEEE Transactions on Multimedia, 2013, 15 (5): 1110-1120.
  • 8Wang C, Liu Z, Chau S C. Superpixel-based hand gesture recog- nition with Kinect depth camera[ J]. IEEE Transactions on Mul- timedia, 2015, 17 ( 1 ) : 29-39.
  • 9Azy O, Ahuja N. Segmentation of periodically moving objects [ C]//Proceedings of the 19th International Conference on Pat- tern Recognition. Tampa, Florida, USA: IEEE, 2008: 1-4.
  • 10Li N N, Wu X Y, Xu D, et al. A new approach for hand-waving detection in crowds [ C ]//Proceedings of the IEEE International Conference on Robotics and Biomimetics. Shenzhen, China: IEEE, 2013: 2489-2493.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部