期刊文献+

PSO优化在模糊联合补充问题中的应用

PSO-optimization method of joint replenishment problem with fuzzy requirement
下载PDF
导出
摘要 对用PSO算法解决需求为不确定的联合补充问题进行了研究。运用模糊规划方法处理需求为模糊变量的联合补充问题,得到了作为求解目标的模糊数学模型;采用PSO思想对该模型进行分析,转化为PSO问题模型,制定出算法流程,并用数值实例验证了提出的粒子群优化模型和求解算法的有效性;对随机生成的大量数据进行处理,结果证明问题规模相同时该算法较遗传算法具有更高的效率。 The solution to the Joint Replenishment Problem(JRP) with fuzzy resource constraint by PSO algorithm is studied. Fuzzy programming method is used to deal with the joint replenishment problem with fuzzy demands, and the fuzzy mathematical model is got. The model is analyzed by PSO method, and converted into a PSO problem model. The algorithm process is worked out. A numerical example shows the effectiveness of the proposed particle swarm optimization model and the algorithm. Much data randomly generated is processed. The results prove that to solve problems under the same scale, this PSO algorithm has a higher efficiency than genetic algorithm.
作者 冯钧 李成严
出处 《计算机工程与应用》 CSCD 2012年第35期238-242,共5页 Computer Engineering and Applications
基金 黑龙江省自然科学基金(No.F200821)
关键词 粒子群优化(PSO)算法 模糊需求 联合补充问题 Particle Swarm Optimization(PSO) algorithm fuzzy requirement joint replenishment problem
  • 相关文献

参考文献13

  • 1Moon I K,Cha B C.The joint replenishment problem with resource restriction[J].European Journal of Operational Research,2006,173(1):190-198.
  • 2李成严,徐晓飞,战德臣.模糊资源约束的联合补充问题[J].计算机集成制造系统,2008,14(1):113-117. 被引量:14
  • 3Arki N E,Jonei A D,Round Y R.Computational complexity of uncapacitated multiechelon production planning prob-lems[J].Operations Research Letters,1989,8(1):61-69.
  • 4William E H.A theoretical comparison of evolutionary algorithms and simulated annealing[C]//Proceedings of the5th Annual Conference on Evolutionary Programming.[S.l.]:MIT Press,1996:147-153.
  • 5Tang Jun,Zhao Xiajuan.An enhanced opposition based particle swarm optimization[C]//Global Congress on In-telligent System(GCIS),Xiamen,China,2009:149-153.
  • 6Parsopoulos K E,Vrahatim N.On the computation of all global minimizers throughparticle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3).
  • 7Veeremachneni K,Osadciw L,Kamath G.Probabilistically driven particle swarms for optimization of multi valued discrete problems:design an analysis[C]//Proc of IEEE Swarm Intelligence Symposium(SIS),Honolulu,2007:141-149.
  • 8Van den Bergh F.An analysis of particle swarm optimi-zers[D].South Africa:University of Pretoria,2002.
  • 9Shi Y H.Experimental study of particle swarm optimization[C]//Proceedings of SCI Conference,2000.
  • 10包美玲,李成严,唐远新.模糊需求的联合补充问题研究[J].计算机应用与软件,2010,27(9):91-93. 被引量:4

二级参考文献14

  • 1Kaspim,Rosenblatt M.On the economic ordering quantity for jointly replenished items[J].International Journal or Production Research,1991,29(1):107-114.
  • 2Khouja M,Goyal S.A review of the joint replenishment problemliterature:1989-2005[J].European Journal of Operational Research,2008,186(1):1-16.
  • 3Moon I K,Cha B C.The joint replenishment problem with resource restriction[J].European Journal of Operational Research,2006,173(1):190-198.
  • 4Khouja M,Michal iwicz Z,Satoskar S.A comparison between genetic algorithms and the RAND method for solving the joint replenishment problem[J].Production Plan2ning & Control,2000,11(6):556-564.
  • 5Arif S,Zahid A.Fuzzy Control with Limited Opportunities and Response delay a Production-inventory Control Scenario[J].International Journal of Approximate Reasoning,2005,38(4):113-131.
  • 6Silver E A.A simple method of determining order quantities in joint replenishments under deterministic demand[J].Management Science,1976,22(12):1351-1361.
  • 7ARKIN E, JONEJA D, ROUNDY R. Computational complexity of uncapacitated multi-echelon production planning problems[J]. Operations Research Letters, 1989, 8 ( 1 ):61-69.
  • 8GOYAL S. A method for improving joint replenishment systems with a known frequency of replenishment orders[J]. International Journal of Production Research, 1973, 11 (2):195-200.
  • 9SILVER E A. A simple method of determining order quantities in joint replenishments under deterministic demand[J]. Management Science, 1976, 22(12): 1351-1361.
  • 10KHOUJA M, MICHALIWICZ Z, SATOSKAR S. A comparison between genetic algorithms and the RAND method for solving the joint replenishment problem[J]. Production Planning & Control, 2000,11(6):556-564.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部