期刊文献+

一类新的基于拉盖尔正交多项式的核函数 被引量:4

New set of kernel functions based on Laguerre orthogonal polynomial
下载PDF
导出
摘要 基于拉盖尔正交多项式,提出了广义的拉盖尔多项式,由此建立了一类新的核函数—拉盖尔核函数。在双螺旋集和标准UCI数据集上的实验表明,该核函数比常用的核函数(多项式核、高斯径向基核等)具有更强的鲁棒性与更好的泛化性能,而且该核函数的参数仅在自然数中取值,能大大缩短参数优化时间。 This paper introduces generalized Laguerre polynomial based on Laguerre orthogonal polynomial, and derives a new set of kernel function--Laguerre kernel function from generalized Laguerre polynomial. The performance and robustness of the presented kernel are investigated on bi-spiral benchmark data set as well as five data sets from the UCI benchmark repository. The experiment results demonstrate that the presented kernel has better robustness and generalization performance compared with commonly used kernel functions (polynomial kernel and Radial Basis Function etc.). Moreover, the Laguerre kernel has one parameter which only chooses from natural number, thus parameter optimization is facilitated greatly.
出处 《计算机工程与应用》 CSCD 2012年第36期50-53,79,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60975035) 教育部博士点基金(No.20091401110003) 山东理工大学博士基金(No.4041-410002)
关键词 支持向量机 核函数 模型选择 Support Vector Machine(SVM) kenel function model selection
  • 相关文献

参考文献10

  • 1Vapnik V.Statistical learning theory[M].New York:Wiley, 1998.
  • 2Artan Y,Huang X.Combining multiple 2nu-SVM classifi- ers for tissue segmentation[C]//IEEE ISBI,2008:488-491.
  • 3Chert C H, Ho P G P.Statistical pattern recognition in remote sensing[J].Pattern Recognition, 2008,41 : 2731-2741.
  • 4Wu Z L, Li C H, Ng J K Y, et al.Location estimation via support vector regression[J].IEEE Trans on Mobile Comput, 2007,6 (3) : 311-321.
  • 5Bi L P, Huang H, Zheng Z Y, et al.New heuristic for determination Gaussian kemels parameter[J].Mach Learn- ing Cybemet, 2005,7 : 4299-4304.
  • 6Liu H J, Wang Y N, Lu X F.A method to choose ker- nel function and its parameters for support vector ma- chines[J].Mach Learning Cybernet,2005,7:4277-4280.
  • 7Wu K P, Wang S D.Choosing the kernel parameters of support vector machines according to the inter-cluster distance[C]//IJCNN' 06,2006: 1205-1211.
  • 8Zhang Rui, Wang Wenjian.Facilitating the applications of support vector machine by using a new kernel[J].Expert Systems with Applications,2011,38: 14225-14230.
  • 9李庆阳,王能超,易大义.数值分析[M].北京:清华大学出版社,2008.
  • 10邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M]北京:科学出版社,2004:145-151.

共引文献9

同被引文献32

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部