期刊文献+

细菌觅食算法与K-means结合的Web用户会话聚类 被引量:2

Integration of bacterial foraging with K-means for Web user session clustering
下载PDF
导出
摘要 Web用户会话聚类是电子商务领域的NP-难问题,目的是发现相似的用户访问行为模式。该问题难度在于对大规模的Web会话进行聚类,且每个会话都表示为高维向量。提出一种细菌觅食算法和K-means相结合的优化算法,用知名的数据集测试其有效性。对Web会话进行聚类,与流行的聚类算法进行比较,实验结果显示该算法高效且性能更优。 Web user session clustering is an NP-hard problem of the e-commerce field. The purpose is to discover user access patterns of behavior. The difficulty of the problem is that large-scale Web session clustering, and each session is indicated for the high-dimensional vector. This paper presents a type of clustering algorithm combining bacterial foraging algorithm with K-means algorithm, using the well-known data set to test their effectiveness, and the Web session clustering. Compared with the popular clustering algorithm, the experimental results show that the algorithm is efficient and has better performance.
作者 凌海峰 王浩
出处 《计算机工程与应用》 CSCD 2012年第36期121-124,176,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.71071047) 安徽省自然科学基金(No.1208085MG120) 高等学校博士学科点专项科研基金(No.20090111110016) 合肥工业大学博士学位专项资助基金(No.2010HGBZ0301)
关键词 WEB使用挖掘 细菌觅食优化 K-MEANS算法 会话聚类 电子商务 Web usage mining bacterial foraging optimization K-means algorithm Web session clustering e-business
  • 相关文献

参考文献14

  • 1Shahabi C, Zazkesh A, Adibi J, et al.Knowledge discovery from users Web-page navigation[C]//Workshop on Re- search Issues in Data Engineering, 1997:20-29.
  • 2Fu, Sandhu K.A generalization-based approach to clus- tering of Web usage sessions[C]//International Workshop on Web Usage Analysis and User Profiling,1999:21-38.
  • 3Banerjee A, Merugu S, Dhillon I.A generalized maximum entropy approach to bregman co-clustering and matrix approximation[J].The Journal of Machine Learning Re- search, 2007,8 : 455-474.
  • 4Labroche N, Monarche N, Gventurini.AntClust: ant clus- tering and Web usage mining[C]//Lecture Notes in Com- puter Science 2723:Proc Genetic and Evolutionary Com- putation Conf.Berlin, Heidelberg, Germany: Springer-Ver- lag,2003:25-36.
  • 5Abraham A.Natural computation for business intelligence from Web usage mining[C]//Intemational Conference on Symbolic and Numeric Algorithms for Scientific Com- puting, 2005 : 3-10.
  • 6Chen J Y, Zhang H Y.Research on application of cluster- ing algorithm based on PSO for the Web usage pattern[C]// International Conference on Wireless Communications, Networking and Mobile Computing,2007:3705-3708.
  • 7Wan M, Li L X, Xiao J H, et al.Data clustering using bacterial foraging optimization[J].Journal of Intelligent Information Systems, 2012,38 : 321-341.
  • 8Agrawal V, Sharma H, Bansal C J.Bacterial foraging op- timization: a survey[C]//Proceedings of the International Conference SocProS, AISC 130,2011 : 227-242.
  • 9范会联,罗跃国,李献礼.一种带克隆选择的粒子群动态聚类算法[J].山东大学学报(工学版),2011,41(2):12-17. 被引量:2
  • 10Abraham A, Guo H.Swarm intelligence: foundations, per- spectives and applications[J].Swarm Intelligent Systems, Studies in Computational Intelligence, 2006,26: 3-25.

二级参考文献63

  • 1段铷,张彩庆,刘爱芳.模糊聚类在电力用户分类中的应用[J].电力需求侧管理,2005,7(5):18-20. 被引量:12
  • 2Kim D H,Cho C H.Bacterial foraging based neural network fuzzy learning[C] //IICAI 2005,2005:2030-2036.
  • 3Acharya D P,Panda G,Mishra S,et al.Bacteria foraging based independent component analysis[C] /International Conference on Computational Intelligonce and Multimedia Applications.Los Alamitos:IEEE Press,2007:527-531.
  • 4Dasgupta S,Biswas A,Das S,et al.Automatic circle detection on images with an adaptive bacterial foraging algorithmiC] //2008 Genetic and Evolutionary Computation Conference(GECCO 2008),2008:1695-1696.
  • 5Chen H,Zhu Y,Hu K.Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning[J].Applied Soft Computing,2010,10:539-547.
  • 6Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22:52-67.
  • 7Berg H.Motile behavior of bacteria[J].Phys Today,2000,53(1):24-29.
  • 8Berg H C,Brown D A.Chemotaxis in escherichia coli analyzed by three-dimensional tracking[J].Nature,1972,239:500-504.
  • 9Das S,Biswas A,Dasgupta S,et al.Bacterial foraging optimization algorithm:Theoretical foundations,analysis,and applications[J].Foundations of Comput Intel,2009,3:23-55.
  • 10Liu Y,Passino K M.Biomimicry of social foraging bacteria for distributed optimization:Models,principles,and emergent behaviors[J].J Optimization Theory Applicat,2002,115(3):603-628.

共引文献80

同被引文献20

  • 1熊伟丽,徐保国,吴晓鹏,肖应旺.带变异算子的改进粒子群算法研究[J].计算机工程与应用,2006,42(26):1-3. 被引量:12
  • 2贾兆红,陈华平,孙耀晖.混合粒子群算法在柔性工作车间调度中的应用[J].系统仿真学报,2007,19(20):4743-4747. 被引量:17
  • 3Farahmand A,Payan S,Hosseini Sarvari S M.Geometric optimization of radiative enclosures using PSO algorithm[J].International Journal of Thermal Sciences,2012,60(1):61-69.
  • 4Bashir Z A,El-Hawary M E.Applying wavelets to short term load forecasting using PSO based neural networks[J].IEEE Transactions on Power System,2009,24(1):20-27.
  • 5Pluhacek M.On the behavior and performance of chaos driven PSO algorithm with inertia weight[J].Computers&Mathematics with Applications,2013,66(2):122-134.
  • 6Liang J J,Qin A K,Suganthan P N.Comprehensive learning particles swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
  • 7Chu Wei,Gao Xiaogang,Sorooshian S.Handling boundary constraints for particle swarm optimization in highdimensional search space[J].Information Sciences,2011,181(20):4569-4581.
  • 8Wang Liying.An improved cooperative particle swarm optimizer[J].Telecommunication Systems,2013,53(1):147-154.
  • 9Pandit N,Tripathi A,Tapaswi S.An improved bacterial foraging algorithm for combined static/dynamic environmental economic dispatch[J].Applied Soft Computing,2012,12(11):3500-3513.
  • 10Supriyono H,Tokhi O M.Parametric modelling approach using bacterial foraging algorithms for modelling of flexible manipulator systems[J].Engineering Applications of Artificial,2012,25(5):898-916.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部