摘要
针对BFSN算法需要人工输入参数r和λ的缺陷,提出了一种自适应确定r和λ的SA-BFSN聚类方法。该方法通过Inverse Gaussian拟合判断r参数,通过分析噪声点数量的分布特征选择合适的λ值。算法测试表明,使用SA-BFSN无需人工输入参数,能够实现聚类过程的全自动化,能够有效处理任意形状、大小和密度的簇。
Algorithm for BFSN defects that require manual input parameters r and λ, an adaptive SA-BFSN clustering method that can automatically determine r and λ is proposed. The method determines r by Inverse Gaussian fitting parameters, and by analyzing the distribution of the number of noise points to select the appropriate value of λ. Algorithm tests show that use of SA-BFSN doesn't need human input parameters, to achieve full automation of the clustering process, to deal effectively with any shape, size and density of the cluster.
出处
《计算机工程与应用》
CSCD
2012年第36期186-189,共4页
Computer Engineering and Applications