期刊文献+

一种改进的基于SIFT特征的商标检索方法 被引量:1

Improved algorithm for trademark retrieval based on SIFT features
下载PDF
导出
摘要 利用商标图像的形状特征,提出了一种融合图像全局特征和局部特征的商标检索算法。其中全局特征反映了图像的整体信息,这些信息可用来较快地建立候选图像库,而局部特征则可以更准确地与候选图像进行匹配。提取图像的傅里叶描述子进行初步检索,按相似度排序,在此结果集的基础上对候选图像通过提取SIFT特征进行精确匹配。实验结果表明,该方法既保持了SIFT特征的良好描述能力,又减少了精确匹配需要的计算次数,降低了复杂度。 According to the shape characteristics of trademark images, this paper proposes a trademark retrieval algorithm combining the image global features and local features. The global features capture the image gross contour. It can be used to rapidly build candidate image database. The local features can be used to more accurately match with candidate image. This paper extracts Fourier Descriptors (FDs) of the retrieved image and sorts them according to similarity. Candidate images are formed. The query image accurately match with candidate images using the SIFT features. Experimental results show that this method not only keeps SIFT features the perfect descriptive ability, but also reduces the computation complexity and has higher precision.
作者 王振海
出处 《计算机工程与应用》 CSCD 2012年第36期190-193,220,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60773098) 吉林省科技发展计划项目 高科技重大项目(No.20080317)
关键词 基于内容的图像检索 商标 傅里叶描述子 尺度不变特征转换(SIFT) Content-Based Image Retrieval(CBIR) trademark Fourier descriptors Scale Invariant Feature Transform(SIFT)
  • 相关文献

参考文献9

  • 1马玉国,武栓虎,宋宜斌.基于多特征抽取的商标图像检索[J].计算机工程与应用,2008,44(18):172-174. 被引量:5
  • 2Qi Heng, Li Keqiu, Shen Yanming, et al.An effective so- lution for trademark image retrieval by combining shape description and feature matching[J].Pattem Recognition, 2010,43 (6) :2017-2027.
  • 3操峰,陈淑珍,魏丹.一种改进的基于内容的商标图像检索方法[J].计算机工程,2006,32(16):174-176. 被引量:4
  • 4郭丽,黄元元,杨静宇.基于形状和空间结构的商标图像检索方法[J].计算机应用与软件,2005,22(1):93-95. 被引量:9
  • 5Wei Chia-Hung,Li Yue,Chau Wing-Yin.Trademark image retrieval using synthetic features for describing globalshape and interior structure[J].Pattem Recognition,2009, 42(3) :386-394.
  • 6Lowe D G.Distinctive image features from scale-invari- ant keypoints[J].Intemational Journal of Computer Vision, 2004,60(2) : 91-110.
  • 7林传力,赵宇明.基于Sift特征的商标检索算法[J].计算机工程,2008,34(23):275-277. 被引量:17
  • 8Persoon E,Fu K S.Shape discrimination using Fourier descriptors[J].IEEE Trans on PAMI, 1986,8(3) :388-397.
  • 9Ismail I A,Ramadan M A, EI-Danaf T S, et al.An effi- cient off_line signature identification method based on fourier descriptor and chain codes[J].International Journal of Computer Science and Network Security, 2010, 10 (5) :29-35.

二级参考文献28

  • 1郭丽,黄元元,杨静宇.基于形状和空间结构的商标图像检索方法[J].计算机应用与软件,2005,22(1):93-95. 被引量:9
  • 2操峰,陈淑珍,魏丹.一种改进的基于内容的商标图像检索方法[J].计算机工程,2006,32(16):174-176. 被引量:4
  • 3黄元元,郭丽.基于分块图像的二值商标图像检索[J].南京航空航天大学学报,2006,38(6):737-742. 被引量:3
  • 4杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1992.2.
  • 5Chen Yi-xin,Wang J Z.A region-based fuzzy feature matching approach to content-based image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(9) : 1252-1267.
  • 6中国商标网.中华人民共和国商标法[z].(2001-10-27).http://sbj.saic.gov.cn.
  • 7Kim Y S, Kim W Y. Content-based Trademark Retrieval System Using Visually Salient Feature[J]. Image Vision Compute, 1998, 16(12): 931-939.
  • 8Eakins J P, Shields K, Boardman J M. ARTISAN A Shape Retrieval System Based on Boundary Family Indexing[J]. Storage and Retrieval for Image and Video Databases, 1996, 31(4): 73-80.
  • 9Lowe D G Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 59(1): 60.
  • 10Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[C]//Proc. of International Conference on Computer Vision and Pattern Recognition. Madison, USA: [s. n.], 2003: 257-263.

共引文献22

同被引文献11

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部