期刊文献+

基于图正则化的半监督非负矩阵分解 被引量:7

Graph regularized-based semi-supervised non-negative matrix factorization
下载PDF
导出
摘要 提出了一种基于图正则化的半监督非负矩阵分解算法(GSNMF),克服了非负矩阵分解(NMF)、约束非负矩阵分解(CNMF)和图正则化非负矩阵分解(GNMF)方法忽略样本数据的局部几何结构或标签信息不足的缺陷,且NMF、CNMF和GNMF均为GSNMF的特例。也从理论上证明了GSNMF算法的收敛性。该算法对样本数据进行低维非负分解时,在图框架下既保持数据的几何结构,又利用已知样本的标签信息,在进行半监督学习时,同类样本能更好地聚集而类间距离尽可能大。在人脸数据库ORL、FERET和手写体数据库USPS上的仿真结果表明,相对于NMF及其一些改进算法,GSNMF均具有更高的聚类精度。 This paper presents a novel algorithm called Graph regularized-based Semi-supervised NMF (GSNMF). It overcomes the shortcomings which ignore the geometric structure and the label information of the data for Non-negative Matrix F actorization (NMF), Constrained NMF (CNMF) and Graphed regularized NMF (GNMF). Moreover, those algorithms are special case of GSNMF. The convergence proof of this algorithm is provided. GSNMF preserves the intrinsic geometry of data and uses the label information as semi-supervised learning. It makes nearby samples with the same class-label more compact, and nearby classes separated. Compared with NMF, LNMF, PNMF, GNMF and CNMF, experiment results on ORL face database, FERET face database and USPS handwrite database have shown that the proposed method achieves better clustering results.
出处 《计算机工程与应用》 CSCD 2012年第36期194-200,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61162021) 西北民族大学中青年科研基金(No.12xb30) 西北民族大学科研创新团队计划
关键词 图像聚类 半监督学习 非负矩阵分解 图正则化 image clustering semi-supervised learning Non-negative Matrix Factorization(NMF) graph regularized
  • 相关文献

参考文献10

  • 1Lee D D, Seung H S.Algorithms for nonnegative matrix factorization[J].Adv Neural Inf Process Syst, 2000, 12: 556-562.
  • 2Cai D, He X, Wu X, et al.Graph regularized non-nega- tive matrix factorization for data representation[J].IEEE Trans on Pattern Anal Mach Intell,2011,33(8) : 1548-1560.
  • 3Liu X, Yan S, Jin H.Projective nonnegative graph em- bedding[J].IEEE Trans on Image Process,2010, 19(5): 1126-1137.
  • 4Yuan Z, Oja E.Projective nonnegative matrix factoriza- tion for image compression and feature extraction[C]// Proc Scand Conf Image Analysis,2005. 333-342.
  • 5Guan N, Tao D, Luo Z, et al.Manifold regularized dis- criminative nonnegative matrix factorization with fast gra- dient descent[J].IEEE Trans on Image Process, 2011,20 (7) :2030-2048.
  • 6Liu H,Wu Z, Cai D, et al.Constrained non-negative ma- trix factorization for image representation[J].IEEE Trans on Pattern Anal Mach,2012,34(7) : 1299-1311.
  • 7Ding C,Li T,Peng W,et al.Orthogonal nonnegative ma- trix tri-factorizations for clustering[C]//Proc 12th ACM SIGKDD Int Conf Knowl Disc Data Mining, 2006: 126-135.
  • 8Xu W,Gong Y.Document clustering by concept factoriza- tion[C]//Proc 2004 Annual ACM SIGIR Conference,2004.
  • 9Li S Z,Hou X,Zhang H,et al.Learning spatially local- ized, parts-based representation[C]//Proc of 2001 IEEE Computer Vision and Pattern Recognition,2001:207-212.
  • 10Yang Z,Oja E.Linear and nonlinear projective nonnega- tive matrix factorization[J].IEEE Trans on Neural Net- work, 2010,21 (5) : 734-749.

同被引文献32

  • 1Lee D D,seung H S. Learning the parts of objects by non-nega- tive matrix faetorization[J]. Nature, 1999,401(6755) : 788-791.
  • 2Cai Deng, He Xiao-fei, Han J ia-wei, et al. Graph regularized non- negative matrix faetorization for data representation[J]. IEEE Trans on Pattern Anal Mach Intell,2011,33(8) : 1548-1560.
  • 3Hoyer P O. Non-negative matrix factorization with sparseness eonstrains[J]. Journal of Machine Learning Research, 2004, 5 (9),1457-1469.
  • 4Sun Fu-ming, Tang Jin-hui, Li Hao-jie, et al. Multi-label image categorization with sparse factor representation [J]. IEEE Transaction on Image Processing, 2014,23(3) : 1028-1037.
  • 5Li S Z, Hou Xin-wen, Zhang Hong-jiang, et al. Learning spatially localized, parts-based representation [C] // Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, California, USA, 2001 (1) :207-212.
  • 6Liu Hai-feng, Wu Zhao-hui, Li Xue-long, et al. Constrained non- negative matrix factorization for image representation [J]. IEEE Trans on Pattern Anal Mach Intell,2012,34(7):1299-1311.
  • 7Shahnaza F, Berrya M W, Paucab V, et al. Plemmonsb. Docu- ment clustering using nonnegative matrix factorization[J]. In- formation Processing Management, 2006,42 (2) : 373-386.
  • 8Lovasz L, Plummet M. Matching Theory [ M]. North Holland, 1986.
  • 9Michael W, Shakhina A, Stewart G W. Computing sparse re- duced-rank approximations to sparse matrices [J]. ACM Trans- actions on mathematical software, 2004,19 (3) : 231-235.
  • 10李乐,章毓晋.非负矩阵分解算法综述[J].电子学报,2008,36(4):737-743. 被引量:105

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部