期刊文献+

基于目标特征模型配置的面向对象检测方法研究

The Research of Object-Oriented Detection Method Based on Technique of Configurable Target Feature Model
下载PDF
导出
摘要 针对目前遥感图像目标检测过程中过度提取特征容易导致样本特征维数过高,造成维数灾难的问题,提出一种基于目标特征模型配置的面向对象检测方法,该方法以特征的可分性为原则判断特征的真实有效性,针对不同的侦查目标,将真正有用的特征配置于该待检测的目标,达到快速、准确自动检测的目的。试验结果表明,该方法能在降低算法复杂度的同时提高目标检测的正确率,能节省样本训练所需的时间。 In the processing procedure of remote sensing image, the over extraction of target feature tends to increase the dimension of target feature, consequently leads to the problem of dimension disaster. Therefore, based on the separability of characteristic, the object can be automatically, accurately and rapidly identified by using the true and effective characteristic for detecting different objects. The experimental results show that the method proposed can reduce the algorithm complexity, promote the ratio of detection validity simultane- ously and shorten the sample training period as well.
出处 《航天控制》 CSCD 北大核心 2012年第6期73-77,共5页 Aerospace Control
关键词 目标检测 目标特征配置 面向对象 ADABOOST Object detection Target character configuration AdaBoost Object-oriented
  • 相关文献

参考文献5

  • 1张菁,沈兰荪,David Dagan Feng.基于视觉感知的图像检索的研究[J].电子学报,2008,36(3):494-499. 被引量:32
  • 2K. Fukunaga, L. D. Hostetler. The Estimation of the Gradi- ent of a Density Function, With Application in Pattern Recognition[ J ]. IEEE Trans. Information Theory, 1975, 21:32-40.
  • 3A. A. Bhattacharyya. On a Measure of Divergence between Two Statistical Ppopulations Defined by their Probability Distributions [ J]. Calcutta Math. Soc, 1943, 35 : 99-110.
  • 4Y. Freund, R. E. Schapire. A Decision-theoretic Generali- zation of Online Learning and an Application to Boosting [ J]. Journal of Computer and System Sciences, 1997, 55 (1) : 119-120.
  • 5涂承胜,刁力力,鲁明羽,陆玉昌.Boosting家族AdaBoost系列代表算法[J].计算机科学,2003,30(3):30-34. 被引量:27

二级参考文献42

  • 1[8]Schapire R E,Singer Y. Using output codes to boost multiclass learning problems. In: Machine Learning: Proc. of the Fourteenth International Conference,1997. 313~321
  • 2[9]Schapire P E,Singer Y. Improved boosting algorithms using confidence-related predictions. In:Proc. of the Eleventh Annual Conf.on Computational Learning Theory, 1998.80~91
  • 3[10]Friedman J,Hastie T,Tibshirani R. Additive logistic regression: a statistical view of boosting: [Technical Report]. 1998
  • 4[11]Schapire R E,Singer Y. BoostTexer :A system for multiclass multi-label text categorization. Machine Learning, 1998
  • 5[1]Valiant L G. A theory of the learnable. Communications of the ACM 1984,27(22) :1134~1142
  • 6[2]Kearns M K, Vazirani L G. Learning Boolean formulae or finite automata is as hard as factoring: [Technical Report TR-14-88].Harvard University Aiken Computation Laboratory,Aug. 1988
  • 7[3]Kearns M J, Vazirani L G. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the Association for Computing Machinery, 1994,41 ((1) :67~95
  • 8[4]Schapire R E. The strength of weak learnability. Machine Learning, 1990,5 (2): 197~227
  • 9[5]Freund Y. Iyer R,Schapire R E,Singer Y. An efficient bossting algorithm for combining preferences. In :Machine Learning:Proc. of the Fifteenth Int Conf. 1998
  • 10[6]Freund Y,Schapire R E. Adecision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Science,1997,55(1):119~139

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部