期刊文献+

倾斜管路内低温Taylor气泡尾迹区流场的实验研究

Experimental Study on the Flow Field in Cryogenic Taylor Bubble Wake in an Inclined Pipe
原文传递
导出
摘要 为了研究低温流体中Taylor气泡周围复杂流场的平均及瞬变特征,搭建了用于低温流体粒子图像测速实验平台,使用快照本征正交分解(POD)方法详细分析了Taylor气泡尾迹区内流场结构.结果表明,在表面张力作用可忽略的情况下,使用流体逆粘度数Nf判断竖直管路中尾迹区流型的方法对液氮流体仍然适用,当管路水平倾角θ≤60°时,该法不再适用.Taylor气泡尾迹区在90°≤θ≤60°内由开放尾迹转变为封闭尾迹,30°倾角下尾迹区涡的轴向尺寸(Lwake)和Taylor气泡长度(LTB)呈指数函数关系,Lwake=51.3-123.5exp(-LTB/2.9).POD分析表明,尾迹区存在明显的湍流大尺度结构,前4阶模态分别占据总能量的15.6%,6.4%,5.6%和3.8%.距离Taylor气泡尾部0.5~1.0D(D为管路内径)的位置存在大尺度结构中涡的交界面,此处的速度脉动也最强.本研究拓展了常温流体中Taylor气泡尾迹区理论在低温流体中的适用范围. In order to investigate the complex characteristics in the wake of Taylor bubble in cryogenic liquid tube flow, the flow field in the wake was measured using particle image veloeimetry (PIV) technique. The PIV measurement results were further analyzed by snapshot proper orthogonal decomposition (POD). The criterion for determining the wake structure using inverse viscosity number Nf is applicable for liquid nitrogen if surface tension effect can be neglected in a vertical tube, but not applicable for the tube at the inclination of 60° to the horizontal. The Nf number of present experiment is much larger than the critical value for the occurrence of an open wake. However, a closed wake was observed both in instantaneous and average flow field as θ being above 60°. The axial size of vortex in the wake (Lwake) increases with the increase of Taylor bubble length (LTB) in an exponential function of Lwskc= 51.3-123.5exp(-LTB/2.9). POD analysis shows that the first several POD modes can effectively capture the main features in Taylor bubble wake. The first 4 modes occupy the 15.6%, 6.4%, 5.6% and 3.8% of total energy. The vortexes distribution coincides with the maximum velocity fluctuation. The present study explores the scope of the theory for normal atmospheric temperature liquid.
出处 《过程工程学报》 CAS CSCD 北大核心 2012年第6期909-916,共8页 The Chinese Journal of Process Engineering
基金 河南省基础与前沿技术研究计划基金资助项目(编号:122300410332)
关键词 低温流体 Taylor气泡 粒子图像测速 本征正交分解 尾迹区 流场结构 cryogenic liquid Taylor bubble particle image velocimetry proper orthogonal decomposition wake region flow structure
  • 相关文献

参考文献12

  • 1Tokuhiro A, Maekawa M, Iizuka K, et al. Turbulent Flow Past a Bubble and an Ellipsoid Using Shadow-image and PIV Techniques [J]. Int. J. Multiphase Flow, 1998, 24(8): 1383-1406.
  • 2Van Hout R, Gulitski A, Bamea D, et al. Experimental Investigation of the Velocity Field Induced by a Taylor Bubble Rising in StagnantWater [J]. Int. J. Multiphase Flow, 2002, 28(4): 579-596.
  • 3Bugg J D, Saad G A. The Velocity Field around a Taylor Bubble Rising in a Stagnant Viscous Fluid: Numerical and Experimental Results [J]. Int. J. Multiphase Flow, 2002, 28(5): 791-803.
  • 4Campos J B L M, Guedes de Carvalho J R F. An Experimental Study of the Wake of Gas Slugs Rising in Liquids [J]. J. Fluid Mech., 1988, 196(1): 27-37.
  • 5Zhang H, Wang S H, Wang J. Experimental Study on Boiling Flow of Liquid Nitrogen in Inclined Tubes-Velocities and Length Distributions of Taylor Bubbles [J]. J. Taiwan Inst. Chem. Eng., 2009, 40(4): 431-438.
  • 6胡学羽,刘亦鹏,王平阳,王经.倾斜管中低温气液两相流弹状气泡生成位置的实验研究[J].上海交通大学学报,2012,46(2):306-311. 被引量:3
  • 7严敬,杨小林,邓万权,刘忠,季全凯,万毅.示踪粒子跟随性讨论[J].农业机械学报,2005,36(6):54-56. 被引量:25
  • 8阮驰,孙传东,白永林,王屹山,任克惠,丰善.水流场PIV测试系统示踪粒子特性研究[J].实验流体力学,2006,20(2):72-77. 被引量:48
  • 9Benjamin J W, Haydee C D, Ronald J H. Optical Contouring of an Acrylic Surface for Non-intrusive Diagnostics in Pipe-flow Investigations [J]. Exp. Fluids, 2008, 45(1): 95-109.
  • 10White E T, Beardmore R H. The Velocity of Rise of Single Cylindrical Air Bubbles through Liquids Contained in Vertical Tubes [J]. Chem. Eng. Sci., 1962, 17(5): 351-361.

二级参考文献25

  • 1史俊茹,邱利民.液氢无损储存系统的最新研究进展[J].低温工程,2006(6):53-57. 被引量:10
  • 2Kimmel A.Effect of quadratic fluid damping in two-phaseliquefied natural gas[C] //2007 AIChE National SpringMeeting.Houston,USA:AIChE,2007:22-26.
  • 3Mario M,Hoyol D R.Calculation models for predic-tion of liquefied natural gas(LNG)ageing during shiptransportation[J].Applied Energy,2010,87:1687-1700.
  • 4Hands B A.Problems due to superheating of cryo-genic liquids[J].Cryogenics,1988,28(12):823-829.
  • 5Van Hout R,Barnea D,Shemer L.Evolution of sta-tistical parameters of gas-liquid slug flow along verti-cal pipes[J].International Journal of MultiphaseFlow,2001,27(9):1579-1602.
  • 6Kuncoro H,Rao Y F,Fukuda K.An experimentalstudy on the mechanism of geysering in a closed two-phase thermosyphon[J].International Journal ofMultiphase Flow,1995,21(6):1243-1252.
  • 7Salman W,Gavriilidis A,Angeli P.On the formationof Taylor bubbles in small tubes[J].Chemical Engi-neering Science,2006,61(20):6653-6666.
  • 8Mayor T S,Pinto A M F R,Campos J B L M.Animage analysis technique for the study of gas-liquidslug flow along vertical pipes—associated uncertainty[J].Flow Measurement and Instrumentation,2007,18(3-4):139-147.
  • 9Van Hout R,Shemer L,Barnea D.Evolution of hy-drodynamic and statistical parameters of gas-liquidslug flow along inclined pipes[J].Chemical Engineer-ing Science,2003,58(1):115-133.
  • 10母国光 战元令.光学[M].北京:人民教育出版社,1991.40-82.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部