摘要
电力系统潮流计算是求解一非线性方程组的问题。因此,各种计算方法均存在着收敛性的问题。从数学模型和计算方法的角度,这些算法基本上可归纳为四种:导纳矩阵迭代法,阻抗矩阵迭代法,牛顿法(P-Q分解法是在此基础上的简化),非线性快速法。关于这几种方法的收敛特性,实际计算表明:阻抗矩阵迭代法通常比导纳矩阵迭代法好得多;牛顿法又比阻抗矩阵迭代法好;非线性快速法虽计算时间较牛顿法少,但迭代次数明显地增多。本文将从计算方法理论的角度,对上述几种方法的收敛性加以比较和说明。
The essence of Load Flow problem is to solve a nolinear equation set. There exists convergence problem for variant methods. In the view of mathematical model and solution methods, there are four main methods: Y Matrix Iteration Method, Z Matrix Iteration Method, Newton-Raphson Method (including P-Q Decoupled Method) and Nonlinear Fast Method. As to the convergence, practical calculation shows that, Z Matrix Iteration. Method is much better than Y Matrix Iteration Method, Newton-Raphson Method is better than Z Matrix Iteration Method and Nolinear Fast Method. This paper compares the convergence of aforementioned methods and explains it theoretically.
出处
《中国电机工程学报》
EI
CSCD
北大核心
1990年第0期79-85,共7页
Proceedings of the CSEE