期刊文献+

核磁共振微陀螺的现状与发展 被引量:11

Current Status and Development of Nuclear Magnetic Resonance Microgyroscopes
下载PDF
导出
摘要 基于核磁共振的微型陀螺仪以其小体积、低功耗、低成本等优势成为了惯性传感器领域新的研究热点。回顾了核磁共振陀螺仪的发展历程,并跟踪了国际上基于核磁共振的微型陀螺仪的最新研究动态。从核磁共振、光抽运和自旋交换碰撞三个方面介绍了核磁共振微陀螺的理论基础和主要涉及的物理效应。针对核磁共振微陀螺的不同结构对其进行分类,并从工作原理和性能参数等方面分别进行了阐述。最后,分析了核磁共振微陀螺的应用领域,对其发展趋势和实际应用所面临的挑战进行了展望,并指出磁抑制和磁屏蔽技术将会成为制约核磁共振微陀螺实际应用的难点。 Microgyroscopes based on the nuclear magnetic resonance (NMR) become the hot re- search topic in the field of inertial sensors due to its small size, low power and less cost. The de- velopment history of NMR gyroscopes is reviewed and the recent international research status of NMR microgyroscopes is introduced. The theoretical base and related physical effects are intro- duced from three points, i.e. the nuclear magnetic resonance, optical pump and spin-exchange collision. The microgyroscopes are classified into several types according to their different struc- tures, and the operation principles and performance parameters are reviewed, respectively. Final- ly, the application fields of NMR microgyroscopes are analyzed, and the development tendency and challenges impacting on practical applications are prospected. It is pointed out that the mag- netic field suppressing and shielding will be the bottleneck for the practical application of NMR microgyroscopes.
出处 《微纳电子技术》 CAS 北大核心 2012年第12期769-774,785,共7页 Micronanoelectronic Technology
基金 十二五支撑项目(61901060301)
关键词 微型陀螺仪 核磁共振(NMR) 原子自旋 原子传感器 微电子机械系统(MEMS) microgyroscope nuclear magnetic resonance (NMR) atomic spin atom sensor mi-cro-electromechanical system (MEMS)
  • 相关文献

参考文献24

  • 1KNAPPE S, SHAH V, SCHWINDT P, et al. A microfabri- cated atomic clock [J]. Applied Physics Letters, 2004, 85 (9) : 1460 - 1462.
  • 2SCHWINDT P, KNAPPE S, SHAH V, et al. Chip-scale atomic magnetometer [C] // Proceedings of the IEEE Inter- national Magnetics Conference INTERMAG. San Diego, Cali- fornia, USA, 2006: 386-388.
  • 3程向红,陈红梅,周雨青,万德钧.核磁共振陀螺仪分析及发展方向[J].中国惯性技术学报,2006,14(6):86-90. 被引量:12
  • 4WOODMAN K F, FRANKS P W, RICHARDS M D. The nuclear magnetic resonance gyroscope: a review [J]. Journal of Navigation, 1987, 40 (3) : 366 - 384.
  • 5FANG J C H, QIN J. Advances in atomic gyroscopes a view from inertial navigation applications [J] Sensors, 2012, 12 (5) 6331 - 6346.
  • 6KITCHING J, KNAPPE S, DONLEY E A. Atomic sensors - a review [J]. IEEE Sensors Journal, 2011, 11 (9) : 1749 - 1758.
  • 7LAM L K, PHILLIPS E, KANEGSBERG E, et al. Applica- tion of CW single-mode GaA1As lasers to Rb-Xe NMR gyro- scopes [J]. Proceedings of SHE, 1983, 412: 272 - 276.
  • 8KORNACK T W, GHOSH R K, ROMALIS M V, Nuclear spin gyroscope based on an atomic comagnetometer [J]. Phy- sical Review Letters, 2005, 95 (23) : 230801 1 - 230801-4.
  • 9KORNACK T W. A test o{ CPT and Lorentz symmetry using a K-3 He co-magnetometer [D]. USA= Princeton University, 2005.
  • 10EKLUND E J. Mierogyroseope based on spin-polarized nuclei[D]. USA: University of Cali{ornia, 2008.

二级参考文献19

  • 1程向红,陈红梅,周雨青,万德钧.核磁共振陀螺仪分析及发展方向[J].中国惯性技术学报,2006,14(6):86-90. 被引量:12
  • 2[1]Woodman K F,Franks P W,Richards M D.The nuclear magnetic resonance gyroscope:A review[J].Navigation,1987,40:366-384.
  • 3[2]Karwacki F A.Nuclear magnetic resonance gyro development[J].Navigation,1980,27:72-78.
  • 4[3]Ivan A.Greenwood.Nuclear gyroscope with unequal fields[P].United States:4147974,Apr.3,1979.
  • 5[4]Bruce C.Grover,et al.Nuclear magnetic resonance gyro[P].United States:4157495,1979-07-05.
  • 6[5]Shaw G L.Modeling a cryogenic 3He nuclear gyro[D].Stanford University,1980.
  • 7[6]Kornack T W,Ghosh R K,Pomails M V.Nuclear spin gyroscope based on an atomic comagnetometer[J].Physical Review Letters,95,2005:230801.1-230801.4.
  • 8[7]Shaw G L,Taber M A.The 3He gyro for an all cryogenic inertial measurement unit[C]//Inertial Navigation System Symposium,Stuttgart,1983:14.0-14.13.
  • 9[8]Shaw G L.3He nuclear gyroscope[R].AD-A159924,1985.
  • 10Grovec B C.Calif nuclear magnetic resonance gyro[P].US No.4157495,1979-06-05.

共引文献12

同被引文献79

  • 1程向红,陈红梅,周雨青,万德钧.核磁共振陀螺仪分析及发展方向[J].中国惯性技术学报,2006,14(6):86-90. 被引量:12
  • 2程华富.交变微弱磁场标准研究[J].水雷战与舰船防护,2009,17(1):9-12. 被引量:4
  • 3KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer [J]. Nature, 2003, 422: 596-599.
  • 4DIDDAMS S A, BERGQUIST J C, JEFFERTS S R, et al. Standards of time and frequency at the outset of 21st centuryFJ~. Science, 2004, 306 (5700): 1318- 1324.
  • 5ADAMS C S, RIIS E. Laser cooling and trapping of neutral atoms [J]. Prog Quant Eiectl, 1997,21 ( 1 ) : 1 79.
  • 6CLAUSER J F. Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave inter-ferometry[J]. Physica B, 1988, 151~ 262-272.
  • 7POST E J. Sagnac effect [J]. Reviews of Modern Physics, 1967, 39(2): 475-493.
  • 8RIEHLE F, KISTERS T, WITTE A, et al. Optical ramsey spectroscopy in a rotating frame:Sagnac effect in a matter wave interferometer[J]. Physical Review Letters, 1991, 67(2): 177-180.
  • 9GUSTAVSON T L. Precision rotation sensing using atom interferometry[D]. USA: Stanford University, 2000.
  • 10YVER F, LANDRAGIN A, DIMARCQ N. A cold atom interferometer for high precision measurements ~C~// S. 1.: Quantum Electronics Conference, 2003: 309.

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部