期刊文献+

直觉模糊概念意义下的属性约简 被引量:1

Attribute reduction based on intuitionistic fuzzy concepts
下载PDF
导出
摘要 针对传统的概念算子的构造只考虑了对象和属性之间的一种二元关系,定义了直觉模糊信息系统.在该系统中,基于对象和属性间的直觉模糊二元正关系和二元负关系建立了关于对象集和属性集的2对算子,它们充分考虑了正、反两方面信息.通过引入精度阈值,定义了3类直觉模糊概念,并讨论了其相关性质.通过引入对象和属性间的支配关系,建立了新的概念格模型,研究了保持哈斯图结构不变的直觉模糊信息系统的属性约简.数值实例验证了该模型的有效性和实用性. Operators which are constructed based on the lattices in traditional concept defines only one relation be- tween objects and attributes. In view of this shortcoming, an intuitionistic fuzzy information system was defined, in which two pairs of operators with regard to object set and attribute set are constructed based on a binary positive re- lation and a binary negative relation between attributes and objects, taking advantage of both the positive and nega- tive information. Three types of intuitionistic fuzzy concepts introducing the precision threshold value are defined, and their properties are discussed. A new model of conceptual lattice was derived by defining a dominance relation- ship between objects and attributes and in addition, the issue on attribute reduction of intuitionistic fuzzy informa- tion systems is investigated under the principle of keeping the Hasse graph invariant. The efficiency and practicabil- ity of this method were verified by examples of research findings.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第11期1447-1452,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(10771043) 黑龙江省留学人员归国基金资助项目(LC2012C36)
关键词 概念格 直觉模糊集 支配关系 属性约简 conceptual lattice intuitionistic fuzzy set dominance relation attribute reduction
  • 相关文献

参考文献13

  • 1GEDIGA G,WILLE R. Formal concept analysis mathemati- cal foundations [M]. Berlin: Springer, 1999: 1-22.
  • 2张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学(E辑),2005,35(6):628-639. 被引量:194
  • 3ZADEH L A. Fuzzy sets [J]. Information Control,1965,8: 338-353.
  • 4BURUSCO A. Concept lattices defined from implication op- erators [J]. Fuzzy Sets and Systems,2000, 114 (3) : 431- 436.
  • 5ELLOUMI S, JAAM J, HASNAH A , et al. A Multi-level conceptual data reduction approach based on the Lukasiewicz implication [ J ]. Information Sciences, 2004, 163 (4) :253-262.
  • 6ATANASSOV K. Intuitionistic fuzzy sets [ J ]. Fuzzy Sets and Systems, 1986, 20(1) : 87-96.
  • 7WANG X, ZHANG W X. Relations of attribute reduction between object and property oriented concept lattices [ J ]. Knowledge-Based Systems, 2008, 21 (5) : 398-403.
  • 8WU Q, LIU Z. Real formal concept analysis on grey-roughset theory [ J ]. Knowledge-Based Systems, 2009, 22 ( 1 ) : 38-48.
  • 9HONG D H, CHOI C H. Multieriteria fuzzy decision-making problems based on vague set theory [ J ]. Fuzzy Sets and Systems,2000, 114(1): 103-113.
  • 10LIU M. Reduction method for concept lattices based on rough set theory and its application [ J ]. Computers and Mathematics with Applications ,2007, 53 (9) : 1390-1410.

二级参考文献18

  • 1Oosthuizen G D. The Application of Concept Lattice to Machine Learning. Technical Report, University of Pretoria, South Africa, 1996.
  • 2Ho T B. Incremental conceptual clustering in the framework of Galois lattice. In: Lu H, Motoda H, Liu H, eds. KDD: Techniques and Applications. Singapore: World Scientific, 1997. 49~64.
  • 3Kent R E. Bowman C M. Digital Libraries, Conceptual Knowledge Systems and the Nebula Interface. Technical Report, University of Arkansas, 1995.
  • 4Corbett D, Burrow A L. Knowledge reuse in SEED exploiting conceptual graphs. In: International Conference on Conceptual Graphs (ICCS'96). Sydney, 1996. University of New South Wales, 1996. 56~60.
  • 5Schmitt I, Saake G. Merging Inheritance hierarchies for scheme integration based on concept lattices [EB/OL]. http: //www.mathematic.tu-darm stadt.de/ags/ag1.
  • 6Siff M, Reps T. Identifying modules via concept analysis. In: Harrold M J, Visaggio G, eds. International conference on software maintenance. Bari, Italy. Washington, DC: IEEE Computer Society, 1997. 170~179.
  • 7Ho T B. An approach to concept formation based on formal concept analysis. IEICE Trans Information and Systems, 1995, E782D (5): 553~559.
  • 8Carpineto C, Romano G. Galois: an order-theoretic approach to conceptual clustering. In: Utgoff P, ed. Proceedings of ICML 293. Amherst: Elsevier, 1993. 33~40.
  • 9Godin R. Incremental concept formation algorithm based on Galois (concept) lattices. Computational Intelligence, 1995, 11(2): 246~267.
  • 10Yao Y Y. Concept lattices in rough set theory. In: Dick S, Kurgan L, Pedrycz W, eds. Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2004), IEEE Catalog Number: 04TH8736, 2004, June 27~30. 796~801.

共引文献193

同被引文献7

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部