期刊文献+

疏水高分子介导可动芯SiO_2杂化纳米粒子的仿生合成 被引量:1

BIOMIMETIC SYNTHESIS OF HYBRID SiO_2 NANOPARTICLES WITH A MOBILE CORE TEMPLATED BY HYDROPHOBIC COPOLYMER
原文传递
导出
摘要 在疏水高分子胶体模板——含氟丙烯酸酯(FA)共聚物乳胶粒中引入能够介导SiO2原位沉积的聚胺催化活性点-甲基丙烯酰氧乙基三甲基氯化铵(DMC),以四甲氧基硅烷(TMOS)为硅源,在环境条件下可控合成了核壳型FA共聚物/SiO2杂化纳米粒子.高温煅烧除去聚合物核质,可得到中空的SiO2纳米粒子,结合FTIR、EDX、TGA以及XPS等表征数据印证了SiO2的沉积主要发生在聚合物模板的表面.进一步考察了反应条件,如聚胺功能单体DMC的浓度、TMOS的浓度以及反应时间对SiO2杂化纳米粒子的形貌与组成的影响.实验结果表明增加DMC或者TMOS的浓度,适当延长反应时间,均可增加SiO2粒子的沉积速率,导致SiO2壳层的厚度增加,并且杂化粒子的形貌由凹陷多褶皱的核壳结构向可动芯结构转变.由于FA共聚物模板的强疏水性,增加有机核层和无机壳层间的不相容排斥,最终导致核壳层间空腔的形成,得到含可动芯的核壳型SiO2杂化粒子。 A series of well-defined hydrophobic copolymers latexes of fluorinated acrylate(FA) with 2-methacrylatoethyl trimethyl ammonium chloride(DMC) were synthesized as potential colloidal templates,and then the core-shell FA copolymer —SiO2 hybrid nanoparticles(NPs) with a mobile core were synthesized via deposition of tetramethyl orthosilicate(TMOS) in aqueous media at room temperature,allowing the formation of hollow-structured silica NPs by subsequent calcinations.No experimental evidence was found for nontemplated silica formation,which indicated that silica deposition occurred exclusively in the latex surface and formed FA copolymer-SiO2 hybrid NPs,which was confirmed by the combination of FTIR,EDX,TGA and XPS determination.Studies from TEM and TGA indicated that the morphology and composition of the resulted SiO2 hybrid nanoparticles could be well controlled by adjusting the DMC concentration,the amount of TMOS and the deposition time.Higher DMC concentration,higher level of TMOS amount or longer deposition time produced the FA copolymer-SiO2 hybrid nanoparticles with more enriched SiO2 content and thicker SiO2 shell.Moreover,the morphology of the core-shell hybrid nanoparticles with dented wrinkled surface turned to regular spherical nanoparticles with a mobile core after SiO2 deposition.These new core-shell FA copolymer-SiO2 hybrid nanoparticles with a mobile core and corresponding hollow-structured silica nanoparticles would have potential applications for high-performance encapsulation and delivery of drugs,pigments and the active organic molecules.
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2012年第12期1399-1408,共10页 Acta Polymerica Sinica
基金 国家自然科学基金青年基金(基金号51003025) 国家高技术研究发展计划(863计划 项目号2010AA065101) 高等学校博士学科点专项科研基金(新教师基金)(项目号20104208和120001)资助项目
关键词 仿生合成 FA共聚物 SiO2杂化纳米粒子 核壳结构 可动芯 Biomimetic synthesis FA copolymer-SiO2 hybrid nanoparticles(NPs) Core-shell morphology Mobile core
  • 相关文献

参考文献22

  • 1Tan W H,Wang K. ,He X X,Zhao X J,Drake T,Wang L,Bagwe R P. Med Res Rev,2004 ,24 :621 -638.
  • 2Vivero-Escoto J L, Slowing I I, Wu C W, Lin V S Y. J Am Chem Soc,2009,131:3462 - 3463.
  • 3Slowing I I,Vivero-Escoto J L,Wu C W,Lin V S Y. Adv Drug Deliver Rev,2008 ,60 :1278 - 1288.
  • 4Corma A, Dlaz U, Arrica M, Femmdez E, Ortega I. Angew Chem,2009,121 : 6365 - 6368.
  • 5Avolio R, Gentile G, Avella M, Capitani D, Errieo M E. J Polym Sei, Part A : Polym Chem,2010,48:5618 - 5629.
  • 6Zapata P, Quijada R, Benavente R. J Appl Polym Sci,2011,119 : 1771 - 1780.
  • 7Brinker C J,Scherer G W. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing. Boston:Academic Press,1990.
  • 8Muller W E G. Silicon Biomineralization : Biology-Biochemistry-Molecular Biology-Biotechnology. Berlin : Springer,2003.
  • 9Cha J N,Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E. Proc Natl Acad Sci USA, 1999,96:361 - 365.
  • 10Krfiger N, Deutzmann R, Sumper M. Science, 1999,286 : 1129 - 1132.

同被引文献24

  • 1Verso F L,Yelash L,Egorov S A,et al.Effect of the solvent quality on the structural rearrangement of spherical brushes:coarse-gained models[J].Soft Matter,2012,8(15):4185-4196.
  • 2Tai X M,Ma J H,Du Z P,et al.A simple method for synthesis of thermal responsive silica nanoparticle/PNIPAAm hybrids[J].Powder Technology,2013,233(2):47-51.
  • 3Zhang L,Dai X J,Xu F,et al.Preparation of imidazolefunctionalized silica by surface-initiated atom transfer radical polymerization and its application for hydrophilic interaction chromatography[J].Anal Bioanal Chem,2012,404(5):1477-1484.
  • 4Xia Y,Yang P,Sun Y,et al.One-Dimensional Nanostructures:Synthesis,Characterization,and Applications[J].Adv Mater,2003,15(5):353-389.
  • 5Pishvaei M,Tabrizi F F.Synthesis of High Solid Content Polyacrylate/Nanosilica Latexes via Miniemulsion Polymerization[J].Iran Polym J,2010,19(9):707-716.
  • 6Wu Y,Hu D,Su Y H,et al.Synthesis and film performances of Si O2/P(MMA-BA)core-shell structural latex[J].Prog Org Coat,2014,77(6):1015-1022.
  • 7Yao L,Yang T T,Cheng S Y.Synthesis and Characterization of Poly(fluorinated acrylate)/silica Hybrid Nanocomposites[J].J App Polym Sci,2010,115(6):3500-3507.
  • 8Park K C,Idota N K,Tsukahara T.Synthesis of NIPAAm-based polymer-grafted silica beads by surfaceinitiated ATRP using Me4Cyclam ligands and the thermo-responsive behaviors for lanthanide(III)ions[J].React Funct Polym,2014,79(6):36-46.
  • 9Li M.,Matyjaszewski K.Further Progress in Atom Transfer Radical Polymerizations Conducted in a Waterborne System[J].J Polym Sci,Part A:Polym Chem,2003,41(22):3606-3614.
  • 10Iacono M,Heise A.Stable Poly(methacrylic acid)Brush Decorated Silica Nano-Particles by ARGET ATRP for Bioconjugation[J].Polymers,2015,7:1427-1443.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部