期刊文献+

基于计算视觉的奶牛体型线性测量系统设计 被引量:7

Design of Cow Size Linear Measurement System Based on the Calculation of the Visual
下载PDF
导出
摘要 目前国内针对家畜体型检测手段较为落后,多数为人工应用半圆仪、卡尺、皮尺等量具进行测量,测试数据需要人工进行处理完成,工作量极大,对家禽体型的非接触检测依旧存在困难,为此提出一种基于计算视觉的家畜体型线性评定系统设计方法;通过CCD设备组成的视觉采集系统对家畜的体态进行图像的含噪采集,运用DSP嵌入式设备组成的模块完成采图像去噪、奶牛关键特征点定位、信息处理等工作,设计软件优化算法,完成基于计算视觉的奶牛体型线性测量系统的设计;实验表明,该方法能够实现家畜的非接触测量,误差低于5%。 Abstract : According to the current domestic animal shape detection means is relatively backward, most for artificial application graphometer, calipers, measuring tape measure, test data to artificial for processing is complete, great workload. To poultry shape non--contact detection remain difficult, therefore this paper puts forward a calculation based on visual livestock size linear evaluation system design method. Through the CCD equipment composition of visual collection system for livestock posture for image with noise acquisition, using DSP embed- ded equipment composition module complete mining image denoising and the key feature point positioning, information processing, design software optimization algorithm, complete calculation based on visual cows size linear measurement system design. Experiments show that the method can realize livestock non--contact measurement, the error less than 5 %.
作者 李斌
出处 《计算机测量与控制》 CSCD 北大核心 2012年第12期3213-3215,3218,共4页 Computer Measurement &Control
关键词 奶牛测量 DSP 软件优化 cows measurement DSP software optimization
  • 相关文献

参考文献4

  • 1Dempster A. P. , Laird N. M. and RubinD. B. Maximum Likelihood from Incomplete Data via the EM Algorithm [J]. Journal of the RoyalStatistical Society, Series B, 1977, 39: 1- 38.
  • 2Koller D. Weber J. , and MalikJ. Robust multiple car tracking with oc- clusion reasoning [A]. Proceedings of the European Conference on Com- puter Vision [C]. 1994:189 - 196.
  • 3Cheng Y. Mean Shift, Mode Seeking, and Clustering [J]. IEEE Trans actions on Pattern Analysis and Machine Intelligence, 1995, 17 (8): 790 - 799.
  • 4Ling CX, Yang Q. Jianning Wang J N, et al. Decision Trees with Mini- mal Costs [A]. Proceedings of 2004 International Conference on Ma- chine Learning (ICMU2004) [C]. 2004, 25 - 26.

同被引文献48

引证文献7

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部