期刊文献+

应用齐波夫定律预测高松山金矿床资源量

Application of Zipf law for the prediction of gold reserve in Gaosongshan gold deposit
下载PDF
导出
摘要 黑龙江高松山金矿床经过20多年的找矿工作,资源量已具有大型规模,但由于目前认识上有分歧,对矿区前景有不同的看法。齐波夫定律在地质矿产资源预测上有一定的应用效果,利用齐波夫定律对高松山金矿床资源量进行预测,得出高松山金矿床仍具有很大的潜力,其预测远景资源量为88 t。 Large scale reserve has been detected in Gaosongshan gold deposit, Heilongjiang Province, through 20 years' exploration work, to which, due to different perspectives, there are various mining blueprints. Zipf law proves to have some effective application on geological mineral resources prediction and it was used to predict Gaosongshan gold deposit and much potential in gold reserve was forecasted with inferred resources of 88 t of gold.
出处 《黄金》 CAS 2012年第12期19-23,共5页 Gold
基金 中国地质调查局项目"黑龙江省逊克县高松山矿区及外围金矿调查评价"(资[2011]02-08-47)
关键词 齐波夫定律 预测量 资源量 高松山金矿床 Zipf law inferred resources amount of resources Gaosongshan gold deposit
  • 相关文献

参考文献6

二级参考文献21

  • 1周宏昆 丁宗强 雷祖志.金属矿床大比例尺定量预测[M].北京:地质出版社,1993..
  • 2Gillepsie P A, Howard C B, Walsh J J, et al. Measurement and characterization of spatial distribution of fractures [J]. Technophysics, 1993, 226(1-4): 113-141.
  • 3Logdson S D. Analysis of aggregate fractal dimensions and aggregate densities back-calculated from hydraulic conductivity [J]. Soil Science Society of America Journal, 1995, 59(5):1216-1221.
  • 4Christopher C B, Paul R L Fractals in petroleum geology and Earth process[M]. New York:Plenum Press, 1995:1-317.
  • 5Turcotte D L. Fractals and chaos in geology and geophysics [M]. 2nd ed. cambridge: Cambridge University Press, 1997:1-398.
  • 6Johnson N L, Kotz S. Continuous univariate distributions-I [M]. New York:John Wiley & Sons Inc, 1970:1-300.
  • 7Shen W, Zhao P D. Multidimensional self-affine distribution with application in geochemistry[J]. Mathematical Geology, 2002, 34(2):109-128.
  • 8Mandelbrot B B. Forecasts of future prices, unbiased markets, and "martingale" models[J]. Journal of Business, University of Chicago, 1966, 39:242-255.
  • 9Ooldberg G. The Pareto law and the pyramid distribution [J]. Publication 505, Shell Development, Houston, Tezas, 1967: 10-20.
  • 10Mandelbrot B B. The fractal geometry of nature[M]. San Francisco: W. H. Freeman and Company, 1982: 1-460.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部