期刊文献+

PCA-BP在城市汽车保有量预测中的应用研究 被引量:6

Research on Urban Car Ownership Prediction Based on PCA-BP Neural Network
下载PDF
导出
摘要 城市汽车保有量影响因素众多,且存在复杂的相关关系,传统数学预测模型和神经网络模型,无法消除影响因素之间的相关性,从而导致预测精度较低。为提高城市汽车保有量预测精度,提出了一种基于主成分分析的BP神经网络预测模型。通过对城市汽车保有量影响因子进行主成分分析,消除各因子间的冗余信息,降低BP神经网络的输入维数,简化神经网络拓扑结构,提高城市汽车保有量的训练速度与预测精度。对南京市2006-2009年南京市汽车保有量进行仿真,实现结果表明,PCA-BP模型的训练速度快、预测精度高,可为城市汽车保有量预测提供参考依据。 Variation of urban car ownership is influenced by many factors, and relations between them are nonlinear. Because redundant information existing in the factors can not be eliminated effectively, prediction accuracy of the traditional mathematical model and neural network model is low. To improve the prediction accuracy of urban car ownership, the PCA - BP was proposed. The redundant information among the various factors was removed through principal component analysis on impact factors of urban ownership, the neural network topology structure was simplified, and the training speed and prediction accuracy were improved. The implementation results show that compared with ARIMA, BP and multiple regression analysis, the prediction accuracy of PCA - BP neural network mode is higher and the speed is faster. The method provides a new way for the urban car ownership production prediction.
出处 《计算机仿真》 CSCD 北大核心 2012年第12期376-379,共4页 Computer Simulation
基金 国家自然科学基金资助项目(40901194)
关键词 汽车保有量 预测 主成分析 Car ownership Prediction Principal component analysis(PCA)
  • 相关文献

参考文献6

二级参考文献29

  • 1何世平.壮大汽车产业 拉动经济发展[J].汽车工业研究,2001(11):31-34. 被引量:3
  • 2裘志民,陈燮阳.建成支柱产业 实现经济规模──汽车史启示录之二[J].汽车工程学报,1995(3):1-1. 被引量:1
  • 3S.Haykin著,叶世伟,史忠植译,神经网络原理[M].北京:机械工业出版社,2004.
  • 4[2]Eduardo A.Vasconcellos the demand for cars in development countries[J].Transport Research-A,1997,245-258.
  • 5[3]Joyce M D.The effect of income on car ownership evidence of asymmetry[J].Transportation Research Part A,2001,807-821.
  • 6[7]Sharon Cullinane,Kevin Cullinane.Car dependence in a a public transport dominated city[J].Evdience From Hong Kong,Transportation Research Part D8,2003.129-138.
  • 7E E Peters.Fractal market analysis:applying chaos theory to investment and economics[M].New York:John Wiley﹠Sons,1996.39-50.
  • 8M Rast.Forecasting financial time series with fuzzy neural network[J].IEEE,1997,1(Oct):28-31.
  • 9D S Poskitt,A R Tremayne.The Selection and Use of Linear and Bilinear Time Series Model[J].International Journal of Forecasting.1986,2:101-114.
  • 10Serletis M shintani.No evidence of chaos but some evidence of dependence in the US stock market[J].Chaos Solitons and Fractals.17,2003.449-454.

共引文献40

同被引文献78

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部