期刊文献+

基于复合分类模型的社交网络恶意用户识别方法 被引量:12

MALICIOUS USERS IDENTIFICATION IN SOCIAL NETWORK BASED ON COMPOSITE CLASSIFICATION MODEL
下载PDF
导出
摘要 社交网络近年发展迅速,微博类社交网络的用户数目及规模急剧增大的同时也带来了诸多安全问题,为了保护用户的隐私和个人、集体的利益,需要针对这些恶意行为进行识别并对恶意用户进行处理。提出一种采用复合分类模型对用户进行分类的方法,并开发了一个对微博类社交网络用户进行分类的系统。通过研究用户的属性和行为特点,比较属性间的相关性,从两方面兼顾了分类的准确性和效率。 While having sharp increase in users and network size as in social network of microblogging, the rapid development of social network in recent years also brings lots of security problems. To protect user privacy, personal and collective interest against violations of these security issues, it is necessary to identify malicious behaviours and deal with malicious users. This paper presents a new method for classifying social network users on composite classification model and develops a system to classify users in social network of microblogging. The system analyses many features of the properties and behaviours of users and compares the correlation between the properties, and is able to take the account of both accuracy and efficiency.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期1-5,17,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61100226) 国家高技术研究发展计划项目(2011AA01A023) 北京市自然科学基金项目(4122085) 公安部三所开放基金课题(C10606)
关键词 新浪微博 社交网络 自动分类特征选择 恶意用户 Sina microblogging Social network Automatic classification Feature selection Malicious users
  • 相关文献

参考文献21

  • 1Zhao Dejin,Mary Beth Rosson.How and why people twitter:the rolethat micro-blogging plays in informal communication at work[C]//Proceedings of the ACM 2009 International Conference on SupportingGroup Work,Sanibel Island,FL,USA,2009.
  • 2Yardi S,Romero D,Schoenebeck G,et al.Detecting spam in a twitternetwork[J].First Monday,2010,15(1).
  • 3Steven Gianvecchio,Xie Mengjun,Wu Zhenyu,et al.Measurement andclassification of humans and bots in internet chat[C]//Proceedings ofthe 17th USENIX Security symposium,San Jose,CA,2008.
  • 4Gianluca Stringhini,Christopher Kruegel,Giovanni Vigna.DetectingSpammers on Social Networks[C]//ACSAC’10 Dec.6-10,2010,Austin,Texas USA.
  • 5Chu Zi,Steven Gianvecchio,Wang Haining.Who is Tweeting on Twit-ter:Human,Bot,or Cyborg?[C]//ACSAC’10 Dec.6-10,2010,Austin,Texas USA.
  • 6Akshay Java,Song Xiaodan,Tim Finin,et al.Why we twitter:under-standing microblogging usage and communities[C]//Proceedings ofthe 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Miningand Social Network Analysis,San Jose,CA,USA,2007.
  • 7Krishnamurthy B,Gill P,Aritt M.A few chirps about twitter[C]//USENIX Workshop on Online Social Networks,2008.
  • 8Bilge L,Strufe T,Balzarotti D,et al.All your contacts are belong to us:Automated identity theft attacks on social networks[C]//World WideWeb Conference,2009.
  • 9Jagatic T N,Johnson N A,Jakobsson M,et al.Social phishing.Comm[J].ACM,2007,50(10):94-100.
  • 10Harris Interactive Public Relations Research.A study of social networksscams[R].2008.

同被引文献123

  • 1陈富国.多维标度法的理论与方法[J].心理科学通讯,1990,13(4):38-42. 被引量:24
  • 2李怡文,刘杰.管理信息系统开发中的用户行为及系统开发策略[J].计算机工程,2005,31(16):61-63. 被引量:4
  • 3马力,焦李成,董富强.一种Internet的网络用户行为分析方法的研究[J].微电子学与计算机,2005,22(7):124-126. 被引量:22
  • 4教育部语言文字信息管理司.中国语言生活状况报告2011[M].北京:商务印书馆,2011.
  • 5中国互联网络信息中心.第35次中国互联网络发展状况统计报告[R].2015.2.3.
  • 6维基百科:Spamming[EB/OL].[2012-10-25].http://en.wikipedia.org/wiki/Spamming.
  • 7Kandasamy K,Koroth P. An integrated approach to spam classification on twitter using url analysis,natural language processing and machine learning techniques [C]. Proceedings of 2014 IEEE Students' Conference on Electrical,Electronics and Computer Science, 2014:1-6.
  • 8百度百科:僵尸粉[EB/OL].[2014-12-01].http://baike.baidu.tom/subview/4047998,16072536.htm.
  • 9Chen K, Chen L,Zhu P D, et al. Unveil the spams in Weibo [C]. Proceedings of 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,Physical and Social Computing,2013: 916-922.
  • 10Yardi S,Romero D,Schoenebeck G,et al. Detecting spam in a Twitter network [EB/OL]. [2010-01-15 ]. http ://first monday.org/ojs/index.php/fm/arti cle/view/2793/2431.

引证文献12

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部