期刊文献+

基于多特征距离学习的视频分类 被引量:2

VIDEO CLASSIFICATION WITH MULTIPLE FEATURE DISTANCE LEARNING
下载PDF
导出
摘要 视频分类在视频检索、内容分析等应用领域具有十分重要的意义。多模态视频特征,如音频、静态图像及视频动作特征等都已经应用于视频分类中,因此如何对多种视频特征进行最佳组合来改善视频分类的性能成为了一个重要研究课题。提出一种基于L1正则化的距离学习方法,对利用多种特征组合提高视频语义标注性能的问题进行研究。由于引入一阶范数正则项,使得模型拥有选取多种视频特征进行最优组合的能力。该方法在通用的Columbia Consumer Video(CCV)视频数据集上显著提高了视频分类的性能。 Video classification plays a significant role in video retrieval and content analysis. Multi-modal video features like audio, static image features and video motion features, etc. have been widely used in video classification, therefore how the multiple video features could be optimally combined to improve the video classification performance has become an important research topic. In this paper we propose an L1 regularised distance learning model to study the subject of improving video semantic annotation performance with multiple features combination. The model gains the capability of an optimal combination of the selected muhiple viteo features due to the L1 norm regularisation term is introduced. Experiments show that our approach substantially improves the performance of video classification on universal Columbia Consumer Video (CCV) video dataset.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期10-12,26,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61073002)
关键词 视频检索 视频分类 距离学习 Video retrieval Video classification Distance learning.
  • 相关文献

参考文献13

  • 1Ivan Laptev.On Space-Time Interest Points[J].International Journal of Computer Vision,2005.
  • 2Quoc V Le,Will Y Zou,Serena Y Yeung,et al.Learning hierarchical invariant spatio-temporal features for action recognition with independ-ent subspace analysis[C]//IEEE Conference on Computer Vision and Pattern Recognition,2011.
  • 3M F M Schmidt,E van den Berg,K Murphy.Optimizing costly func-tions with simple constraints:A limited-memory projected quasi-newton algorithm[C]//Conference on Artificial Intelligence and Statistics,2009.
  • 4L Itti,C Koch.A comparison of feature combination strategies for sali-ency-based visual attention system[C]//SPIE human vision and elec-tronic imaging,1999.
  • 5Hauptmannn A,Chen M Y,Christel M,et al.Confounded expectations:Informedia at TRECVID2004[C]//NIST TRECVID2004Workshop.Gaithersburg:TRECVID press,2004.
  • 6Jiang Y,Ye G,Chang S,et al.Consumer video understanding:A benchmark database[C]//ACM International Conference on Multime-dia Retrieval,2011.
  • 7Piotr Dollár,Vincent Rabaud,Garrison Cottrell,et al.Behavior Rec-ognition via Sparse Spatio-Temporal Features[C]//ICCV VS-PETS,2005.
  • 8Snoek C,Worring M,Geusebroek J,et al.The mediamill trecvid2004se-mantic video search engine[C]//TRECVID Workshop,2004.
  • 9Chua T,Neo S,Li K,et al.Trecvid2004search and feature extrac-tion task by nus pris[C]//NIST TRECVID-2004Workshop,2004.
  • 10Yang Jianchao,Yu Kai,Gong Yihong,et al.Linear spatial pyramid matching using sparse coding for image classification[C]//IEEE Con-ference on Computer Vision and Pattern Recognition,2009.

二级参考文献26

  • 1LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 2老松杨,刘海涛,白亮,衡祥安,王志勇.视频检索综述[J].数字图书馆论坛,2006(8):10-18. 被引量:2
  • 3Piciarelli C, Foresti G L, Snidaro L. Trajectory clustering and its applications for video surveillance//Proceedings of the IEEE International Conference on Advanced Video and Signal based Surveillance. Como, Italy, 2005.40-45.
  • 4Zhang Jianguo, Gong Shaogang. Action categorization with modified hidden conditional random field. Pattern Recogni tion Letters, 2010, 43(1): 197-203.
  • 5Ghanem Nagia, DeMenthon Daniel, Doermann David, Davis Larry. Representation and recognition of events in surveillance video using Petri nets//Proceedings of the International Conference on Computer Vision and Pattern Recognition Workshop. Washington, D.C. USA, 2004:112-120.
  • 6Fusier Florent et al. Video understanding for complex activity recognition. Machine Vision and Applications, 2007, 18 (3) 167-188.
  • 7Patino L, Behhadda H et al. Extraction of activity patterns of large video recordings. IET Computer Vision, 2008, 2(2)108-128.
  • 8Ebadollahi Shahram, Xie Lexing, Chang Shih-Fu, Smith John R. Visual event detection using multi-dimensional con cept dynamics//Proceedings of the International Conference on Multimedia & Expo. Toronto, Ontario, Canada, 2006. 881-884.
  • 9Dong Xu, Change Shih-Fu. Video event recognition using kernel methods with multilevel temporal alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1985-1997.
  • 10Bertini Marco, Bimbo Alberto Del, Serra Giuseppe. Learn ing ontology rules for semantic video annotation//Proceed ings of the 2nd ACM workshop on Multimedia semantics. Vancouver, British Columbia, Canada, 2008:1-8.

共引文献22

同被引文献21

  • 1黄诚,王国营.一种基于颜色聚合向量的图像检索方法[J].计算机工程,2006,32(2):194-196. 被引量:7
  • 2Bagheri -Khaligh A, Raziperchikolaei R, Moghaddam M E. A New Method for Shot Classification in Soccer Sports Video Based on SVM Classifier [ C ]. In: Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). 2012 : 109 - 112.
  • 3Azhar H, Amer A. Classification of Surveillance Video Objects Using Chaotic Series[J]. IET Image Processing,2012,6(7 ) :919 -931.
  • 4Kafai M, Bhanu B. Dynamic Bayesian Networks for Vehicle Classi- fication in Video[ J]. 1EEE Transactions on Industrial lnformatics, 2012,8(1) :100 -109.
  • 5Ekenel H K, Semela T. Muhimodal Genre Classification of TV Pro- grams and YouTube Videos [ J ]. Multimedia Tools and Applica- tions,2013,63(2) : 547 -567.
  • 6Connolly J F, Granger E, Sabourin R. An Adaptive Classification System for Video - based Face Recognition [ J ]. Information Sci- ences ,2012,192:50 - 70.
  • 7Wang X F, Zhang X P. An ICA Mixture Hidden Conditional Ran- dom Field Model for Video Event Classi~cation[J]. IEEE Tra~- actions on Circuits and Systems for Video Technology, 2013, 23 (1) :46 -59.
  • 8Mithun N C, Rashid N U, Rahman S M M. Detection and Classifi- cation of Vehicles from Video Using Multiple Time - Spatial Images [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(3) :1215 - 1225.
  • 9Swain M J, Ballard D H. Color Indexing[ J]. International Journal of Computer Vision, 1991, 7(1) :11 -32.
  • 10Stricker M A, Orengo M. Similarity of Color Images [ C ]. In : Pro- ceedings of SPIE' s Symposium on Electronic Imaging : Science & Technology. Storage and Retrieval for Image and Video Databases, 1995, 2420:381 - 392.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部