期刊文献+

基于SNS的图书推荐系统研究与实践 被引量:10

RESEARCH AND PRACTICE OF AN SNS-BASED BOOK RECOMMENDER SYSTEM
下载PDF
导出
摘要 为提高信息服务质量,数字图书馆可利用推荐系统为用户寻找文献资源带来便利,并提高图书资源利用率。传统的推荐算法面临数据稀疏等问题时有其局限性。针对此问题,提出并实现一个基于社会网络软件的图书推荐系统,系统应用三种个性化图书推荐算法,能够充分挖掘用户数据,建立准确的用户兴趣模型并推送良好的图书推荐结果。数据分析结果表明,引入额外的社会关系数据有助于提升图书推荐系统的性能。 In order to improve the quality of information services, personalised recommender system can be applied in digital library systems to help users find literature resources more conveniently and improve the utilisation of library resources. When facing the problem of data sparse, traditional recommendation algorithm has its limitations. To solve this, a book recommender system based on social network software is proposed and implemented. Through utilising three personalised book recommendation algorithms, the system is able to fully mine the user data, constructs user interest model more accurately and pushes better recommendation results to users. Data analyses results show that the introduction of additional social relational data can help to enhance the performance of the book recommendation system.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期21-23,46,共4页 Computer Applications and Software
基金 国家自然科学基金重点项目(60933013)
关键词 个性化推荐 数字图书馆 社会网络软件 Personalised recommendation Digital library Social network software
  • 相关文献

参考文献2

二级参考文献20

  • 1曾庆辉,邱玉辉.一种基于协作过滤的电子图书推荐系统[J].计算机科学,2005,32(6):147-150. 被引量:14
  • 2邵志峰,李荣陆,胡运发.基于中图分类法的用户兴趣模型研究[J].计算机应用与软件,2007,24(8):85-86. 被引量:9
  • 3李卫华,卢雨民,梅红.浅谈数字图书馆个性化信息推荐系统[J].科技广场,2007(9):109-110. 被引量:9
  • 4Mariella Di Giacomo,Dan Mahoney,Johan Bollen,et a l.MyLibrary,A Personalization Service for Digital Library Environment s[].Proceedings of thend DELOS Workshop on Personalization andRecommender Systems in Digital Libraries.2001
  • 5Seikyung Jung,Kevin Harris,Janet Webster,et a l.SERF:integrating human recommendations with search[].Conferenceon Information and Knowledge Management of ACM.2004
  • 6Gary Geisler,David McArthur,Sarah Giersch.DevelopingRecommendation Services for a Digital Library with Uncertainand Changing Data[].Proceedings of thest ACM jointconference on digital libraries.2001
  • 7San-Yih Hwang,Ee-Peng Lim.A Data Mining Approach toNew Library Book Recommendation[].ICADL.2002
  • 8E.Herrera-Viedma,F.Chiclana,F.Herrera,et a l.Groupdecision making model with incomplete fuzzy preferencerelations based on additive consistency[].IEEE Transactionson Systems.2007
  • 9L.Martinez,L.G.Perez,M.Barranco.A multigranular linguisticbased-contentrecommendation mode l[].International Journal ofIntelligent Systems.2007
  • 10C.Porcel,JM.Moreno,E.Herrera-Viedma.A multi-disciplinarrecommender system to advice research resources in UniversityDigital Librarie s[].Expert Systems With Applications.2009

共引文献54

同被引文献97

  • 1乔珠峰,田凤占,黄厚宽,陈景年.缺失数据处理方法的比较研究[J].计算机研究与发展,2006,43(z1):171-175. 被引量:13
  • 2王余光,李雅.浅议社会阅读的几个问题[J].新世纪图书馆,2007(3):3-4. 被引量:39
  • 3蔺丰奇,刘益.信息过载问题研究述评[J].情报理论与实践,2007,30(5):710-714. 被引量:63
  • 4数据挖掘[EB/OL].http://www. stcsm, gov. cn/learning/lesson/xinxi/20021125/lesson. asp.
  • 5最小努力原则[EB/OL].[2012-01-16]http://wiki.xingong.net/index.php/.
  • 6Ben J Schafer, Dan Frankowski, Jon Herlocker and Shilad Sen. Collaborative filtering recommender systems[J]. Lecture Notes in Computer Science, 2007(4321):291-324.
  • 7Aymand J Mooney, Loriene Roy. Content- based book recommending usinglearning for text categorization[C]//Proceedings of the fifth ACM Conference on Digital libraries, 2000:95-204.
  • 8Apriori[EB/OL]. [2013-02-14]. http://baike.baidu. com/view/2230129.htm.
  • 9孙守义,王蔚.一种基于用户聚类的协同过滤个性化图书推荐系统[J].现代情报,2007,27(11):139-142. 被引量:25
  • 10Hwang S Y, Wei C P, Liao Y F. Co-authorship networks and academic literature recommendation[J]. Electronic Commerce Research and Applications,2010, 9(4):323-334.

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部