期刊文献+

基于PLSA-BOW模型的医学影像分类算法的研究 被引量:2

MEDICAL IMAGE CLASSIFICATION ALGORITHM BASED ON PLSA-BOW MODEL
下载PDF
导出
摘要 随着现代医学成像技术的快速发展,医学影像分类已经成为重要的辅助诊疗需求。将文本领域中的词袋模型引入到图像领域,构建视觉词袋模型。为解决多义词和同义词问题,通过把词袋模型与PLSA主题模型结合,提出PLSA-BOA模型来解决传统词袋模型中的语义问题,这使得基于词袋模型的分类方法在精度上得到了进一步提高。实验结果表明,PLSA-BOW模型用于医学影像分类,具有较高的分类精度。 With the rapid development of modem medical imaging technology, medical image classification has become an important auxiliary diagnosis and treatment demand. In this paper we introduce the bag-of-words model in text field to image field, and build the model of visual bag-of-words model. To solve the problems of polysemous words and synonyms, we propose the PLSA-BOW model to solve the semantics problem in traditional bag-of-words model by combining the bag-of-words model with PLSA subject model. This makes the classification method based on bag-of-words model further improved in accuracy. Experimental results show that the PLSA-BOW model for medical image classification has higher classification accuracy.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期103-107,共5页 Computer Applications and Software
基金 中央高校基本科研业务费专项(N100404002)
关键词 医学影像分类 词袋模型 概率潜在语义分析算法 Medical image Classification Bag-of-words model Probabilistic latent semantic analysis (PLSA)
  • 相关文献

参考文献10

  • 1Martin Szummer,Rosalind W Picard.Indoor-Outdoor Image Classifica-tion[C]//Content-Based Access of Image and Video Database,1998:42-51.
  • 2Wang S L.Information-Based Color Feature Representation for ImageClassification[C].Image Processing,2007,6:353-356.
  • 3Jun Wang.Narrowing Semantic Gap in Content-based Image Retrieval[C]//Computer Distributed Control and Intelligent Environmental Mo-nitoring,2012:433-438.
  • 4Deng shengzhang,Md Monirul Islam,Guojun Lu.A review on auto-matic image annotation techniques[J].Pattern Recognition,2012,45(1):346-362.
  • 5Zheng-Jun Zha,Dacheng Tao,Tat-Seng Chua.Semantic-Gap-Orien-ted Active Learning for Multilabel Image Annotation[J].IEEE trans-actionn on image processing,2012,21(4):2354-2360.
  • 6Li Fei-Fei,Pietro Perona.A Bayesian Hierarchical Model for LearningNatural Scene Categories[C]//Computer Vision and Pattern Recogni-tion,2005,2:524-531.
  • 7T.Hofmann.Unsupervised Learning by Probabilistic Latent SemanticAnalysis[J].Machine Learning,2001,42(1):177-196.
  • 8Bentley J L.Multidimensional Binary Search Trees Used For Associa-tive Searching[J].Communication of the ACM,1975,18(9):509-517.
  • 9Christopher M Bishop.Pattern recognition and Machine Learning[M].Corr.2007:424-461.
  • 10Quelhas P.Modeling scenes with local descriptors and latent aspects[C]//International Conference on Computer Vision,2005,1:883-890.

同被引文献27

  • 1Mantena G,Anguera X. Speed improvements to Information Retrieval- based dynamic time warping using hierarchical K-Means clustering [ C ]//Proc of IEEE International Conference on Acoustics, Speech and Signal Processing, 2013:8515 - 8519.
  • 2Lloyd S. Least squares quantization in PCM [ J ]. Information Theory, IEEE Transactions on, 1982, 28 (2) :129-137.
  • 3Philbin J, Chum O, Isard M, et al. Lost in quantizatiou: Improving particular object retrieval in large scale image databases [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Wash- ington DC : IEEE Computer Society,2008 : 1 - 8.
  • 4Philbin J, Chum O, Isard M, et al. Object retrieval with large vocabu- laries and fast spatial matching [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC : IEEE Com- puter Society,2007 : 1 - 8.
  • 5Nister D, Stewenius H. Scalable recognition with a vocabulary tree [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2006:2161 - 2168.
  • 6Wang Jing, Wang Jing-dong, Ke Qi-fa, et al. Fast approximate k- means via cluster closures [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC : IEEE Computer Soci- ety, 2012 : 3037 - 3044.
  • 7Norouzi M, Fleet D J. Cartesian k-means[ C]//Proc of IEEE Confer- ence on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society,2013:3017 - 3024.
  • 8Zhou Wenggang, Lu Yi -juan, Li Hgngquang, et al. Scalar Quantiza- tion for Large Scale Image Search [ C ]//Proc of 20th ACM international conference on Multimedia. New York :ACM ,2012 : 169 - 178.
  • 9Eitz M, Richter R, Boubekeur T, et al. Sketch-Based Shape Retrieval [ J]. Graphics, ACM Transactions on, 2012, 31 (4) :1 -10.
  • 10Ji Rongrong, Yao Hongxun, Liu Wei, et al. Task-Dependent Visual Codebook Compression[ J]. Image Processing, IEEE Transactions on, 2012, 21 (4) :2282 -2293.

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部