期刊文献+

基于混沌和动态变异的蛙跳算法 被引量:3

SHUFFLED FROG LEAPING ALGORITHM BASED ON CHAOTIC AND DYNAMIC MUTATION
下载PDF
导出
摘要 针对混合蛙跳算法SFLA(shuffled frog leaping algorithm)易陷入局部最优、收敛速度慢的问题,提出一种改进的混合蛙跳算法。该算法首先用混沌的Tent序列初始化青蛙群体以增强群体的多样性,提高初始解的质量;再根据每只青蛙的群体适应度方差值选取不同的变异概率,有效增强了SFLA跳出局部最优解的能力。通过对6个经典函数的仿真测试,结果表明,新算法比SFLA和ISFLA1的寻优能力更强,迭代次数更少,解的精度更高。 To address the problems of shuffled frog leaping algorithm (SFLA) such as prone to running into local optimal and slow in convergence, an improved shuffled frog leaping algorithm is presented. In this algorithm, first the frog population is initialised with chaotic Tent sequence to enhance the diversity of the group for improving the quality of initial solution. Then the different mutation probability will be selected according to population fitness variance of each frog, so that the ability of shuffled frog leaping algorithm is effectively enhanced in jumping out of local optimal solution. The simulation results of experiments on six classical functions show that compared with SFLA and ISF- LA1, the new algorithm has stronger searching ability, its iterations number is less, and the precision of solution is higher.
作者 刘悦婷
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期137-140,185,共5页 Computer Applications and Software
基金 甘肃省科技支撑计划项目(090GKCA034) 甘肃省自然科学基金项目(0916RJZA017)
关键词 混合蛙跳算法 混沌优化法 动态变异 适应度方差 更新策略 全局最优 Shuffled frog leaping algorithm (SFLA) Chaos optimisation method Dynamic mutation Fitness variance Update strategy Global optimum
  • 相关文献

参考文献9

二级参考文献55

  • 1罗红,慕德俊,邓智群,王晓东.网格计算中任务调度研究综述[J].计算机应用研究,2005,22(5):16-19. 被引量:61
  • 2ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Engineering Informatics, 2005,19(1 ):43-53.
  • 3EUSUFF M M, LANSEY K E. Optimization of water distribution network design using shuffled frog leaping algorithm [ J ]. Journal of Water Resources Planning and Management, 2003,129 ( 3 ) : 210-225.
  • 4LIONG S Y, ATIQUZZAMAN M. Optimal design of water distribution network using shuffled complex evolution [ J ]. The Institution of Engineers, 2004,44( 1 ) :93-107.
  • 5EUSUFF M M. Water resources decision making using meta-heuristic optimization methods[ D ]. Tucson: University of Arizona, 2004.
  • 6ELBEHAIRY H, ELBELTAGI E, HEGAZY T, et al. Comparison of two evolutionary algorithms for optimization of bridge deck repairs [J ]. Computer-Aided Civil and Infrastructure Engineering, 2006,21 (8) :561-572.
  • 7WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) :67-82.
  • 8BIRBIL S I, FANG S C. An electromagnetism-like mechanism for global optimization[ J]. Journal of Global Optimization, 2003,25 (3) :263-282.
  • 9Eusuff M M,Lansey K E.Optimization of water distribution network design using the shuffled frog leaping algorithm[J].Journal of Water Sources Planning and Management,2003,129(3):210-225.
  • 10Moscato P.On evolution,search,optimization,genetic algorithms and martial arts:towards memetic algorithms[R].Technical Report Caltech ConcurrentComputation Program,Report826,California Institute of Technology,Pasadena,CA,1989.

共引文献306

同被引文献26

  • 1Cai Huaiping Liu Jingxu Chen Yingwu Wang Hao.Survey of the research on dynamic weapon-target assignment problem[J].Journal of Systems Engineering and Electronics,2006,17(3):559-565. 被引量:48
  • 2罗德林,段海滨,吴顺详,李茂青.基于启发式蚁群算法的协同多目标攻击空战决策研究[J].航空学报,2006,27(6):1166-1170. 被引量:49
  • 3Long W,Liang X M,Huang Y F,et al.A hybrid differential evolution augmented Lagrangian method for constrained numerical and engineering optimization[J].Computer-Aided Design,2013,45(12):1562-1574.
  • 4Amirjanov A.The development of a changing range genetic algorithm[J].Computer Methods in Applied Mechanics and Engieering,2006,195(19-22):2495-2508.
  • 5Ma H P,Simon D.Blended biogeography-based optimization for constrained optimization[J].Engineering Applications of Artificial Intelligence,2011,44(3):517-525.
  • 6Le Riche R G,Knopf-Lenoir C,Haftka R T.A segregated genetic algorithm for constrained structural optimization[C]//Proceedings of the 6th International Conference on Genetic Algorithms.San Francisco,CA:Morgan Kaufman,1995:558-565.
  • 7Yang X S.Nature inspired meta-heuristic algorithms[M].2nd ed.Frome,UK:Luniver Press,2010:97-104.
  • 8Wang Y,Cai Z,Zhou Y,et al.Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique[J].Structural Multidiscipline Optimization,2009,37(4):395-413.
  • 9Wang Y,Cai Z,Zhou Y.Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization[J].International Journal for Numerical Methods in Engineering,2009,77(11):1501-1534.
  • 10Kheawhom S.Efficient constraint handling scheme for differential evolution algorithm in solving chemical engineering optimization problem[J].Journal of Industrial and Engineering Chemistry,2010,16:620-628.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部