期刊文献+

利用改进的最优聚类算法边缘提取方法研究 被引量:6

ON EDGE DETECTION METHOD USING IMPROVED BEST CLUSTERING ALGORITHM
下载PDF
导出
摘要 研究灰度图像的边缘提取的问题。针对传统边缘提取方法容易受到噪声干扰的问题,提出一种利用像素局部方差、信息熵、梯度和分散度特征的聚类算法,并利用Silhouette准则自动测定最优的聚类个数,从而有效地提高聚类和边缘提取的准确性。首先,利用对图像进行预处理,通过对各个像素提取四种不同的特征值,作为聚类分类器的输入;然后,遍历不同的聚类个数,并以Sil-houette作为最优聚类个数的判别标准,最终确定K聚类算法的类别个数。该方法可以有效地提取图像的边缘,尤其对噪声较多的图像能保证很好的边缘提取准确率。 Edge detection issue of greyscale image is studied in the paper. Aiming at the problem of traditional edge detection method that it is prone to noise interference, we propose a clustering algorithm utilising local variance of pixels, information entropies, gradients and dispersion characteristics, and use Silhouette criterion to automatically measure the best clustering number, therefore effectively improve the ac- curacy of clustering and edge detection. First, we pre-process the image and extract four different feature ~~alues on every pixel as the input of clustering classifier. Secondly, different clustering numbers are traversed, and we use Silhouette as the judging criterion of best clustering number, and at last we determine the category number of K-means clustering algorithm. Our method can effectively detect the edge of image, in particular the image with more noises, and can ensure the fine accuracy rate of edge detection.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期295-297,328,共4页 Computer Applications and Software
关键词 K均值聚类 边缘提取 去噪 Silhouette准则 信息熵 K-means clustering Edge detection De-noise Silhouette criterion Information entropy
  • 相关文献

参考文献8

二级参考文献37

  • 1傅一平,李志能,袁丁.基于优化设计Gabor滤波器的边缘提取方法[J].计算机辅助设计与图形学学报,2004,16(4):481-486. 被引量:18
  • 2赵艳明,全子一.一种空间自适应小波门限去噪算法[J].光通信研究,2004(5):49-51. 被引量:4
  • 3Ziou D, Tabbone S. Edge detection techniques-- An overview. Pattern Recognition and Image Analysis, 1998, 8(4): 537-559.
  • 4Prewitt J M S. Object enhancement and extraction//Picture Processing and Psychopictorics. New York: Academic Press, 1970.
  • 5Lyvers E P, Mitchell O R. Precision edge contrast and orientation estimation. IEEE Transactions on Pattern Analysis and machine Intelligence, 1988, 10(6): 927-937.
  • 6Marr D, Hildreth E. Theory of edge detection. Proceedings of the Royal Society of London, Series B: Biological Sciences, 1980, 207(1167): 187-217.
  • 7Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
  • 8Ziou D. Line detection using an optimal IIR filter. Pattern Recognition, 1991, 24(6) : 465-478.
  • 9Hou Z J, Wei G W. A new approach to edge detection. Pattern Recognition, 2002, 35(7): 1559-1570.
  • 10Demigny D. On optimal linear filtering for edge detection. IEEE Transactions on Image Processing, 2002, 11(7): 728- 737.

共引文献73

同被引文献55

  • 1王娜,李霞.一种新的改进Canny边缘检测算法[J].深圳大学学报(理工版),2005,22(2):149-153. 被引量:77
  • 2陈强,朱立新,夏德深.结合Canny算子的图像二值化[J].计算机辅助设计与图形学学报,2005,17(6):1302-1306. 被引量:51
  • 3YONG YANG.Image segmentation base on fuzzy clusteringwith neighborhood information[J].Oplica Applicata,2009(1):135-147.
  • 4XIAO Mansheng,LIU Youshi,ZHOU Xiaoqi.property op-timization method in support of approximately duplicated re-cords detecting[C]// IEEE Intenational Conference on Intelli-gent Conputing and Intelligent System,2009:118-122.
  • 5杨给标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2006:39-40.
  • 6曲福恒,崔广才,李岩芳,等.模糊聚类算法及应用[M].湖南:国防工业出版社,2011,140-176.
  • 7da CVNHA A L,ZHOU Jian-ping,DO M N. The non-subsampled contourlet transform:theory,design,and applications[J].IEEE Transactions on Image Processing,2006,(10):3089-3101.
  • 8孙延奎.小波分析及其应用[M]北京:机械工业出版社,200531-36157-158.
  • 9DO M N,VETTERLI M. The contourlet transform:an efficient directional multi-resolution image representation[J].IEEE Transactions on Image Processing,2005,(12):2091-2106.
  • 10RAMAN M, AGGARWAL H. Study and comparison of vari- ous image edge detection techniques[ Jl- International Jour- nal of Image Processing, 2009 (2) : 113-118.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部