期刊文献+

特征提取与主成份分析的合成孔径雷达图像的分类方法研究 被引量:5

ON CLASSIFICATION METHOD OF SYNTHETIC APERTURE RADAR IMAGE BASED ON FEATURE EXTRACTION AND PRINCIPAL COMPONENT ANALYSIS
下载PDF
导出
摘要 合成孔径雷达的图像分类,在军事和民事上具有重要意义。为了更好地实现分类,提出一种基于特征提取与主成份分析的方法(FEPCA)。特征集包括图像的Pauli特征、相干矩阵特征、小波特征、纹理特征。由于原始特征数目过多,因此采用主成份分析压缩特征维数。最后,选择人工神经网络作为默认分类器。实验部分选择WML算法与HA算法作为对比算法,对San Francisco的实测数据与地面真实场景显示,所提出的FEPCA算法为95.94%精确度,高于WML的94.82%与HA的95.73%精确度。因此,该算法优于WML与HA算法。 The classification of synthetic aperture radar images is of significance in military and civil affairs. In order to classify better, we propose a novel method which is based on feature extraction and principle component analysis (FEPCA). The feature set includes the Pauli features, correlated matrix features, wavelet features and texture features. Since there are too many original features, therefore the principal component analysis is used to compress the character dimension. At last, we choose artificial neural network as the default classifier. In ex- periment part we pick up WML algorithm and HA algorithm as the comparison algorithms. The measured data in and real ground scenario of San Francisco demonstrate that the proposed FEPCA algorithm achieves 95.94% classification accuracy, higher than the that of 94.85% of WML algorithm and 95.73% of HA algorithm. Therefore, our FEPCA algorithm outperforms WML and HA.
作者 汪海波
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期298-301,共4页 Computer Applications and Software
关键词 合成孔径雷达 主成份分析 图像分类 Synthetic aperture radar Principle component analysis Image classification
  • 相关文献

参考文献19

  • 1Gnanadurai D,Sadasivam V,Paul Tiburtius Nishandh J,et al.Un-decimated double density wavelet transform based speckle reduction inSAR images[J].Computers&Electrical Engineering,2009,35(1):209-217.
  • 2陈尔学,李增元,田昕,李世明.尺度不变特征变换法在SAR影像匹配中的应用[J].自动化学报,2008,34(8):861-868. 被引量:24
  • 3Wu L N,Wei G.A new classifier for polarimetric SAR images[J].Progress in Electromagnetics Research,2009,94(Compendex):83-104.
  • 4Kanevsky M B.Synthetic aperture radar[M].Radar Imaging of theOcean Waves.Amsterdam,Elsevier.2009:99-157.
  • 5Vilardo G,Ventura G,Terranova C,et al.Ground deformation due totectonic,hydrothermal,gravity,hydrogeological,and anthropicprocesses in the Campania Region(Southern Italy)from PermanentScatterers Synthetic Aperture Radar Interferometry[J].Remote Sens-ing of Environment,2009,113(1):197-212.
  • 6Leshkevich G A,Nghiem S V.Satellite SAR Remote Sensing of GreatLakes Ice Cover,Part 2.Ice Classification and Mapping[J].Journalof Great Lakes Research,2007,33(4):736-750.
  • 7Wang S,Wu L.PSONN used for Remote-Sensing Image Classification[J].Journal of Computational Information Systems,2010,6(13):4417-4425.
  • 8Nilubol C,Mersereau R M,Smith M J T.A SAR Target Classifier U-sing Radon Transforms and Hidden Markov Models[J].Digital SignalProcessing,2002,12(2-3):274-283.
  • 9Medina C,Gomez-Enri J,Alonso J J,et al.Water volume variationsin Lake Izabal(Guatemala)from in situ measurements and ENVISATRadar Altimeter(RA-2)and Advanced Synthetic Aperture Radar(ASAR)data products[J].Journal of Hydrology,2010,382(1-4):34-48.
  • 10Wu L,Peterson B S.A Two-Level Iterative Reconstruction Method forCompressed Sensing MRI[J].Journal of Electromagnetic Waves andApplications,2011,25(8-9):1081-1091.

二级参考文献79

  • 1安如,王慧麟,徐大新,冯学智,周绍光,何凯.基于影像尺度空间表达与鲁棒Hausdorff距离的快速角点特征匹配方法[J].测绘学报,2005,34(2):101-107. 被引量:3
  • 2Kamran Ullah Khan,杨建.Polarimetric Synthetic Aperture Radar Image Classification by a Hybrid Method[J].Tsinghua Science and Technology,2007,12(1):97-104. 被引量:2
  • 3高鹏,冯熳,吴乐南.EBPSK调制信号的特殊滤波响应[C]//计算机技术与应用会议论文集.南宁,中国,2009:1018-1024.
  • 4HSING T, LIU L-Y, MARCEL B, et al. The coefficient of intrinsic dependence (feature selection using el CID) [J]. Pattern Recognition, 2005, 38(5) : 623 -36.
  • 5QINGHUA W, YOUYUN Z, LEI C, et al. Fault diagnosis for diesel valve trains based on non-negative matrix factorization and neural network ensemble [ J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1683 -95.
  • 6BEHRENS T, ZHU A X, SCHMIDT K, et al. Multi- scale digital terrain analysis and feature selection for dig- ital soil mapping [ J ]. Geoderma, 2010, 155 ( 3 - 4) : 175 - 85.
  • 7CAMACHO J, PIC J, FERRER A. Data understanding with PCA: Structural and Variance Information plots I J]. Chemometrics and Intelligent Laboratory Systems, 2010, 100(1) : 48 -56.
  • 8LIPOVETSKY S. PCA and SVD with nonnegative loadings [ J ]. Pattern Recognition, 2009, 42 ( 1 ) : 68 - 76.
  • 9RADULOVIC J, RANKOVIC V. Feedforward neural network and adaptive network-based fuzzy inference system in study of power lines [ J ]. Expert Systems with Applications, 2010, 37(1): 165-70.
  • 10KHOSRAVI A, NAHAVANDI S, CREIGHTON D. A prediction interval-based approach to determine optimal structures of neural network metamodels [ J ]. Expert Systems with Applications, 2010, 37 (3) : 2377 - 87.

共引文献58

同被引文献55

  • 1陈劲松,邵芸,李震.基于目标分解理论的全极化SAR图像神经网络分类方法[J].中国图象图形学报(A辑),2004,9(5):552-556. 被引量:15
  • 2Sivic J, Zisserman A. ject matching in videos. Vision. Washington 1470--1477 Video google: a text retrieval approach to ob- Proc of International Conference onComputer DC : IEEE Copmputer Society, 2003:.
  • 3Csurka G, Dance C, Fan L, et al. Visual categorization with bags of key points. Workshop on Statistical Learning in Computer Vision, ECCV 2004.1--9_2.
  • 4S Lazebnik, C Schmid, J Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. Prec. of CVPR' 06, 2006.
  • 5Philbin J, Chum O, Isard M, et al. Object retrieval with large vocab- ularies and fast spatial matching. In: Proc of the CVPR. Minneapo- lis, 2007.
  • 6Fei-Fei L, Fergus R, Perona P. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: IEEE CVPR Workshop on Generative- Model Based Vision, 2004.
  • 7Griffin G, Holub A, Perona P. Caltech-256 Object Category Data- set. (7694) , 2007.
  • 8Yang L, Jin R, Sukthankar R, et al. Unifying discriminative visual codebook generation with classifier training for object category reeog-nition. In: Proc of the IEEE Conf on Computer Vision and Pattern Recognition (CVPR) , 2008.
  • 9Coates A, Ng AY. The importance of encoding versus training with sparse coding and vector quantization. In: Proc of the ICML, 2011.
  • 10Lowe D G. Distinctive image features from scale-invariant key- points. International Journal of Computer Vision, 2004 ,60 ( 2 ) : 91 -- 110.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部