期刊文献+

自适应加权局部相位量化的人脸识别 被引量:9

Face Recognition Based on Adaptively Weighted LPQ
下载PDF
导出
摘要 针对局部相位量化(LPQ)方法描述图像特征时不能对各个子图像不同的贡献率加以区分的问题,提出了一种自适应加权局部相位量化(AWLPQ)的人脸识别方法。首先对人脸图像进行分块并在每个子图像上进行LPQ特征提取,然后将信息熵作为衡量各个子图像对整体人脸描述的贡献度的依据,对每个子图像进行自适应加权。在FERET数据库上进行的实验表明AWLPQ具有较好的识别性能。随后针对AWLPQ中存在的高维向量问题,作了进一步分析,引入了近邻保持嵌入(NPE)的流形算法进行降维,提出了AWLPQ-NPE方法。实验结果表明该方法具有很好的鲁棒性和识别性能。 In order to address the problem that Local Phase Quantization (LPQ) method couldn't discriminate among the sub-patterns based on their different contribution when describing the image feature. A method for face recognition called as Adaptively Weighted Local Phase Quantization (AWLPQ) is proposed. At first, the face images are divided into several sub-images and the feature fetch is based on the LPQ method. And then proposed algorithm employs an adaptively weighting map to weight the sub-patterns based on their information entropy which is defined as the contribution to describe the whole face images. Experiments on the FERET face database show that the proposed method is effective. In addition, in order to solve the problem of high dimension in AWLPQ, Neighbor Preserving Embedding (NPE) is applied for dimension reduction. The experimental results indicate that the method gains both relative robustness and good recognition accuracy.
出处 《光电工程》 CAS CSCD 北大核心 2012年第12期138-142,共5页 Opto-Electronic Engineering
基金 江南大学自主基金(JUSRP11232)
关键词 人脸识别 局部相位量化 自适应加权 近邻保持嵌入 face recognition local phase quantization adaptively weighted neighbor preserving embedding
  • 相关文献

参考文献14

  • 1HOLUB A, MOREELS P, PERONA P. Unsupervised clustering for Google searches of celebrity images [C]//$th IEEE International Conference on Automatic Face & Gesture Recognition, Amsterdam, The Netherlands, September 17-19, 2008: 1-8.
  • 2CAO Zhi-min, YIN Qi, TANG Xiao-cu, et al. Face recognition with learning-based descriptor [C]//Proc oflEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, June 13-18, 2010: 2707-2714.
  • 3SERRANO A, de DIEGO I M, et al. Recent advances in face biometrics with Gabor wavelets: A review [J]. Pattern Recognition Letters (S0167-8655), 2010, 31(5): 372-381.
  • 4Nabatchian A, Raheem E A, Ahmadi M. Illumination invariant feature extraction and mutual-information-based local matching for recognition under illumination variation [J]. Pattern Reeognition(S0031-3203), 2011, 44(10/11): 2576-2587.
  • 5Ahonen T, Hadict A, Pietikainen M. Face recognition with local binary patterns [C]//The 8th European Conference on Computer Vision, Prague, Mayll-14, 2004, 3021: 469-481.
  • 6江艳霞,唐彩虹,王娟.融合Gabor特征二阶局部导数模式的人脸识别[J].光电工程,2011,38(10):103-109. 被引量:7
  • 7ZHAO Quan-you, PAN Bao-chang, PAN Jian-jia, et al. Facial expression recognition based on fusion of Gabor and LBP features [C]//ICWAPR. 6th International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, Aug30-31, 2008, 1: 362-367.
  • 8高志升,袁红照,杨军.融合CDI和LBP的人脸特征提取与识别算法[J].光电子.激光,2010,21(1):112-115. 被引量:19
  • 9OJANSIVU V, HEIKKIL J. Blur insensitive texture classification using local phase quantization[C]//Proe of International Conference on Image and Signal Processing, Berlin: Springer-Verlag, 2008, 5099: 236-243.
  • 10Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscienee(S0898-929X), 1991, 3(1): 71-86.

二级参考文献32

  • 1黄鸿,李见为,冯海亮.基于有监督的核局部线性嵌入的人脸性别识别[J].光电子.激光,2009,20(2):248-251. 被引量:3
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3Turk M, Pentland A. Eigenfaces for recognition[J]. Cognitive Neuron Science J. 1991,3(1) :71-86.
  • 4Etenmad K,Chellappe R. Discriminant analysis for recognition of human face images[J]. Journal of the Optical Society of America, 1997, 14(8) : 1724-1733.
  • 5Yang J,Zhang D,Frangi A F,et al. Two-dimensional PCA: a new approach to appearance based face representation and recognition[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2004,2,6 (1) :131-137.
  • 6Bartlett M S,Sejnowski T J. Independent Components of Face Images,A representation for Face Recognition[A]. Proceedings of the Fourth Annual Joint Symposium on Nerval Computation Pasadena [C]. 1997,17.
  • 7Roweis S,Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290(5500) ; 2323-2326.
  • 8Luo J, Ma Y, Takikawa E, et al. Person-specific SIFT Features for Face Recognition[A]. IOASSP[C]. 2007. 593-596.
  • 9Ahonen T,Hadid A,Pietikainen M. Face recognition with local binary pattems[A]. Proc. of European Conference on Computer Vision, Springer[C]. 2004.469-481.
  • 10Ojala T,Pietikainen M,Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary pattems[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2002,2,4 (7) :971-986.

共引文献23

同被引文献57

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2徐庆伶.基于半监督学习的遥感图像分类研究[D].西安:陕西师范大学,2010.
  • 3Pantie, M., Rothkrantz, L.: Automatic analysis of facial expres- sions: the state of art. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1424-1445 (2000).
  • 4He, X.F. and P. Niyogi, Locality preserving projections. 2004, M I T PRESS: CAMBRIDGE. p. 153-160.
  • 5Phillips P, Flynn P, Scruggs T, et al. Overview of the face recognition grand challenge [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 20-25, 2005, 1: 947-954.
  • 6GAO Xinbo, LU Wen, TAO Dacheng, et al. Image Quality Assessment Based on Multiscale Geometric Analysis [J]. IEEE Transaction onImage Processing(S1057-7149), 2009, 18(7): 807-815.
  • 7Woiselle A, Starck J L, Fadili J. 3-D Data Denoising and Inpainting with the Low-Redundancy Fast Curvelet Transform [J]. Journal of Mathematical Imaging andVision(S0924-9907), 2011, 39(2): 121-139.
  • 8YANG Shuyuan, WANG Min, JIAO Licheng, et al. Image fusion based on a new contourlet packet [J]. Information Fusion(S1566-2535), 2010, 11(2): 78-84.
  • 9Guo K, Labate D. Optimally sparse multidimensional representation using Shearlets [J]. SIAM Journal on Mathematical Analysis(S0036-1410), 2007, 39: 298-318.
  • 10Toet A, Hogervorst M A, Nikolov S G, et al. Towards cognitive image fusion [J]. Information Fusion(S 1566-2535), 2010, 11(2): 95-113.

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部