摘要
建立带弹性基础的抗冲瓦的仿真模型,考虑基体材料的超弹性与粘弹性,对冲击载荷下抗冲瓦的抗冲击性能进行分析。着重讨论相对密度,棱边长度,拓扑形状等结构参数对瓦的抗冲击性能的影响规律。结果表明,相对密度越小,瓦的低频抗冲击性能越好;棱边长度越短,瓦的低频抗冲击性能要更好;圆孔结构抗冲瓦的低频抗冲击性能较好,而在中、高频段,反蜂窝结构抗冲瓦的抗冲击性能较好。根据分析结论,对抗冲瓦进行优化,设计出具有优异抗冲击性能的双层结构抗冲瓦。
The dynamic crush behavior of an anti-shock layer with elastic foundation was investigated. Considering the hyperelastic and viscoelastic behavior of the material, the shock resistance capacity of the anti-shock layer was analyzed. Influence of the structure parameters, such as relative density, edge length and topological shape, on the anti-shock performance of the layer was studied. It was found that in low frequency range the shock spectrum is lower when the relative density and the edge length of the layer are smaller, and round hole is the best choice for the anti-shock layer. While in high and middle frequency range, the anti-symmetric honeycomb structures have the best dynamic performance. On the base of the analysis, the optimization design, called anti-shock double-layer structure, has been provided, which has excellent dynamic performance compared to the traditional anti-shock layer.
出处
《噪声与振动控制》
CSCD
2012年第6期100-104,共5页
Noise and Vibration Control
基金
国家自然科学基金(10802051)
关键词
冲击
超弹性
抗冲瓦
手性结构
反蜂窝结构
双层结构抗冲瓦
shock
hyperelastic
anti-shock layer
chiral structure
antisymmetric honeycomb structure
anti-shock double-layer structure