摘要
提出一种求解二维拉氏可压缩流体力学方程的中心型二阶精度有限体积方法.利用特征理论构造网格节点处的局部近似演化算子,算子用来求解网格节点处的速度及压力,利用这些物理量更新节点位置及计算网格界面通量.通过结合一定的重构方案,该方法达到时、空二阶精度,并且形式简单、计算量小,适用于结构网格与非结构网格.典型数值实验表明,本文格式具有良好的收敛性、对称性及鲁棒性,且能自然地求解多物质流动问题.
We present a second order cell-centered finite volume method of 2D Lagrangian hydrodynamics based on semi-discrete framework.Velocity and pressure on vertex of a cell are computed with characteristics theory.Then,they are used to compute numerical flux through cell interface by trapezoidal integration rule.With a reconstruction procedure,the method is extended to second order.Several numerical experiments confirm convergence and symmetry of the method.The method permits large CFL numbers and can be applied on structured and unstructured grids.It is robust in multi-material flow simulations.
出处
《计算物理》
EI
CSCD
北大核心
2012年第6期791-798,共8页
Chinese Journal of Computational Physics
基金
国家自然科学基金(A011702)
中国工程物理研究院科学发展基金(2010B0201030)资助项目
关键词
二维拉氏流体力学
特征理论
中心型格式
二阶精度
2D Lagrangian hydrodynamics
characteristics theory
cell-centered scheme
second order