摘要
使用单元中心型拉氏方法,研究一维球、柱坐标等径向对称流体力学方程组的数值格式和减少壁热误差的方法.简要分析壁热误差与差分格式修正方程的关系.通过对Riemann问题声波和HLL近似解的比较,提出减少壁热误差的一种自适应的热通量粘性.多项数值实验表明该方法可以获得令人满意的计算结果.
A numerical scheme and method deducing "wall heating errors" in computing problems of radially symmetric flow using Lagrangian cell-centered schemes is investigated.Relation between "wall heating error" and modified equations of difference schemes is introduced.With comparision of sound wave approximate Riemann solver and HLL Riemann solver,a new adaptive heat conduction viscosity is introduced to ameliorate "wall heating errors".Numerical experiments show that this viscosity in current scheme provides satisfactory results.
出处
《计算物理》
EI
CSCD
北大核心
2012年第6期807-814,共8页
Chinese Journal of Computational Physics
基金
国家自然科学基金(11071025)
国防基础科研项目(B1520110011)
中物院科学技术发展基金(2010A0202010)
计算物理实验室基金资助项目