期刊文献+

一种减少壁热误差的自适应热粘性 被引量:4

Wall Heating and Adaptive Heat Conduction Viscosity
下载PDF
导出
摘要 使用单元中心型拉氏方法,研究一维球、柱坐标等径向对称流体力学方程组的数值格式和减少壁热误差的方法.简要分析壁热误差与差分格式修正方程的关系.通过对Riemann问题声波和HLL近似解的比较,提出减少壁热误差的一种自适应的热通量粘性.多项数值实验表明该方法可以获得令人满意的计算结果. A numerical scheme and method deducing "wall heating errors" in computing problems of radially symmetric flow using Lagrangian cell-centered schemes is investigated.Relation between "wall heating error" and modified equations of difference schemes is introduced.With comparision of sound wave approximate Riemann solver and HLL Riemann solver,a new adaptive heat conduction viscosity is introduced to ameliorate "wall heating errors".Numerical experiments show that this viscosity in current scheme provides satisfactory results.
出处 《计算物理》 EI CSCD 北大核心 2012年第6期807-814,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11071025) 国防基础科研项目(B1520110011) 中物院科学技术发展基金(2010A0202010) 计算物理实验室基金资助项目
关键词 径向对称流动 Riemann解 壁热误差 radially symmetric flow Riemann solution wall heating errors
  • 相关文献

参考文献16

  • 1Noh W F. Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux [ J ]. J Comput Phys, 1987, 72 : 78 - 120.
  • 2Menikoff R. Errors when shock-waves interact due to numerical shock width [ J]. SlAM J Sci Comput, 1994, 15:1227 - 1242.
  • 3Gehmeyr M, Cheng B, Mihalas D. Noh' s constant-velocity shock problem revisited [ J]. Shock Waves, 1997, 7 : 255 - 274.
  • 4Rider W J. Revisiting wall heating [ J]. J Comput Phys, 2000, 162:395 -410.
  • 5Hui W H, Kudriakov S. On wall overheating and other computational difficulties of shock-capturing methods [ J ]. ComputFluid Dyn J, 2001, 10(2) : 192 -209.
  • 6Fedkiw R P, Marquina A, Merriman B. An isobaric fix for the overheating problem in muhimaterial compressible flows [ J]. J Comput Phys, 1999, 148:545 -578.
  • 7Bae S H, Lahey R T. On the use of nonlinear filtering, artificial viscosity, and artificial heat transfer, for strong shock computations [J]. J Comput Phys, 1999, 153:575-595.
  • 8Shen Z J, Yan W, Lv G X. Behavior of viscous solutions in Lagrangian formulation [ J]. J Comput Phys, 2010, 229:4522 - 4543.
  • 9Chorin A J. Random choice solutions of hyperbolic systems [ J]. J Comput Phys, 1976, 22:517 -533.
  • 10Harten A, Lax P D, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws [ J]. SIAM Rev, 1983, 25(1): 35-61.

同被引文献8

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部