期刊文献+

面向无线NoC平台的拓扑与映射联合设计 被引量:2

Co-Design of Topology and Mapping for Wireless NoC Platform
下载PDF
导出
摘要 传统NoC映射算法基于拓扑是确定的,无法为具体应用动态选择最优拓扑。无线NoC具有互联简单、低功耗、低延时、多播和动态带宽分配等突出优点。利用灵活的网络接入特性,提出面向无线NoC平台的拓扑与映射联合设计算法,采用改进的能耗模型,结合实时复杂系统特有的注入率、迭代边界等约束,以最小化延时和功耗为目标,同时对拓扑和映射进行优化。通过对无线通信系统——MIMO-OFDM收发端进行建模与仿真,证明该算法较之传统映射算法有明显的性能提升。 Conventional NoC mapping is based on fixed topologies and lacks the capability to choose the best fit topology dynamically for a specific application. Wireless NoC, which features simple VLSI implementation, lower latency and power consumption, provides the capability of broadcasting and dynamic bandwidth allocation. A topology and mapping co-design algorithm was proposed based on flexible network access technique. In the co design, an improved energy model was used in combination with speci^ic constraints o[ real-time complex system, such as injection rate, iteration bound, and etc. , to optimize latency and power consumption simultaneously. As an example, modeling and simulation of MIMO-OFDM transmitter/receiver were made to evaluate its performance. Experimental results showed that the new algorithm achieved remarkable performance enhancement, compared with traditional mapping algorithm.
出处 《微电子学》 CAS CSCD 北大核心 2012年第6期846-849,873,共5页 Microelectronics
基金 教育部博士点新教师基金资助项目(200806141015) 新一代重大专项资助项目(2011ZX03003-003-04)
关键词 无线NoC 拓扑 映射 延时 Wireless NoC Topology Mapping Latency
  • 相关文献

参考文献4

  • 1BYUNG, KIMY, KIMJ, et al. An 8.4 Gb/s 2.5 pJ/b mobile memory I/O interface using bi-directional and simultaneous dual (Baseq-RF)-band signaling [C] //Int Sol Sta Circ Conf. San Francisco, CA, USA. 2011 : 488-490.
  • 2CHANG M F, CONG J, KAPLAN A, et al. CMP network-on-chip overlaid with multi-band RF- interconnect [C] // IEEE 14th Int Symp HPCA. Salt Lake City, UT, USA. 2008: 191-202.
  • 3HU J, MARCULESCU R. Energy- and performance- aware mapping for regular NoC architectures [J]. IEEE Trans Comp Aid Des Integr Circ : Syst, 2005,24(4): 551-562.
  • 4CHEN Y-O, HU J-H, CHEN G-S, et at. Energy and delay-aware mapping for real-time digital processing system on network on chip platforms [C] // 23th IEEE Int SOC Conf. Las Vegas, NV, USA. 2010: 375-378.

同被引文献11

  • 1FURBER S. Future trends in SoC interconnect [C]//Int Symp SoC. Tampere, Finland. 2005: 295-298.
  • 2BENINI L, DE MICHELI G. Networks on chip: a new SoC paradigm [J]. Computer, 2002, 35(1): 70-78.
  • 3CHANG M F, ROYCHOWDHURY V P, ZHANG L, et al. RF/wireless interconnect for inter- and intra-chip communications [J]. Proceed IEEE, 2001, 89(4): 456-466.
  • 4CHANG M F, CONG J, KAPLAN A, et al. CMP network-on-chip overlaid with multi-band RF-inter- connect [C]//IEEE 14th Int Symp HPCA. Salt Lake City, UT, USA. 2008: 191-202.
  • 5FLOYD B A, HUNG C M, O K K. Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters [J]. IEEE J Sol Sta Circ, 2002, 37(5): 543-552.
  • 6WANG Y, ZHAO D. The design and synthesis of a syn- chronous and distributed MAC protocol for wireless network-on-chip [C] // IEEE/ACM Int Conf Comp Aid Des. San Jose, CA, USA. 2007: 612-617.
  • 7DEB S, GANGULY A, PANDE P P, et al. Wireless NoC as interconnection backbone for multicore chips: promises and challenge [J]. IEEE Circ Syst Society. 2012, 2(2): 228-239.
  • 8DEB S, GANGULY A, CHANG K, et al. Enhancing performance of network-on-chip architectures with millimeter-wave wireless interconnects [C] // IEEE IntConfASAP. Rennes, France. 2010: 73-80.
  • 9KEMPA K, RYBCZYNSKI J, HUANG Z, et al. Carbon nanotubes as optical antenna [J]. Advan Mater, 2007, 17(3): 421-426.
  • 10吕鹏.混合无线片上网络结构及通信机制的研究[D].硕士学位论文.哈尔滨:哈尔滨工业大学,2012.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部