期刊文献+

干涉阵列米波雷达的低仰角高精度估计方法 被引量:4

High accuracy estimation of low elevation angle based on the interferometric array in the VHF radar
下载PDF
导出
摘要 针对米波雷达低仰角估计的难题,结合干涉技术和超分辨算法的优点,提出了干涉阵列米波雷达的高精度低仰角估计方法.该方法首先利用干涉结构扩展阵列孔径,再将常规的空间平滑算法推广到干涉阵,提出了干涉阵的空间平滑方法,然后应用其实现低仰角多径信号的解相干,最后利用双尺度酉ESPRIT算法得到低仰角的高精度估计.仿真结果和实测数据验证了干涉阵列的前后向空间平滑方法及干涉阵列的高精度低仰角估计方法的有效性,并分析了该方法存在的信噪比门限与基线模糊门限的产生原因. Due to the difficulty with the measurement of the low elevation angle on targets near the horizon for VHF radar,combining the interferometry and the advantages of superresolution algorithms,a novel method to estimate low elevation angles with high accuracy based on the interferometric array is proposed.The interferometric array extends the array aperture with small pieces of hardware.The interferometric forward/backward spatial smoothing technique is proposed from the conventional spatial smoothing algorithm for the uniform linear array and is used to decorrelate the ground multipath signal.Then we obtain highly accurate estimation of the low elevation using the dual-size unitary ESPRIT algorithm.Simulation results and real data demonstrate the efficacy of the interferometric forward/backward spatial smoothing technique and the proposed method,with the reasons why there exist the SNR threshold and baseline ambiguity threshold in the proposed method analyzed.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2012年第6期42-48,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61001209 61101244) 航空科学基金资助项目(20100181010)
关键词 干涉阵列 低仰角 空间平滑 解模糊 interferometric array low elevation angle spatial smoothing ambiguity resolution
  • 相关文献

参考文献15

  • 1Chen Baixiao, Zhao Guanghui, Zhang Shouhong. Altitude Measurement Based on Beam Split and Frequency Diversity in VHF Radar[J]. IEEE Trans on AES, 2010, 46(1) : .3-13.
  • 2朱伟,陈伯孝,周琦.两维数字阵列雷达的数字单脉冲测角方法[J].系统工程与电子技术,2011,33(7):1503-1509. 被引量:18
  • 3Kim J, Yang H J, Kwark N. Low-angle Tracking of Two Objects in a three-Dimensional Beamspace Domain[J]. IET Radar, Sonar : Navigation, 2012, 6(1): 9-20.
  • 4Fernandez M, Turner E, Kai-Bor Yu. Main-beam Multitarget Monopulse Super-resolution[C]//2011 IEEE National Radar Con. Kansas: IEEE. 2011: 447-452.
  • 5刘俊,刘峥,谢荣,张方芳.米波雷达低仰角波达方向估计的快速算法[J].西安电子科技大学学报,2011,38(5):115-120. 被引量:2
  • 6Blunt S D, Chan T, Gerlaeh K. Robust DOA Estimation: the Reiterative Superresolution(RISR)Algorithm [J]. IEEE Trans on AES, 2011, 47(1) : 332-346.
  • 7Jacobs E, Ralston E W. Ambiguity Resolution in Interferometry[J]. IEEE Trans on AES, 1981, 7(6) : 766-780.
  • 8Chen W, Xu X, Wen W, et al. Super-resolution Direction Finding with Far-Separated Suharrays Using Virtual Array Elements [J] . lET Radar, Sonar and Navigation, 2011, 5(8): 824-834.
  • 9Friedland'er B, Weiss A J. Direction Finding Using Spatial Smoothing with Interpolated Arrays [J]. IEEE Trans on AES, 1992, 28(2): 574-587.
  • 10YANG XueYa CHEN BaiXiao CHEN YunHai.An eigenstructure-based 2D DOA estimation method using dual-size spatial invariance array[J].Science China(Information Sciences),2011,54(1):163-171. 被引量:9

二级参考文献40

  • 1朱庆明.数字阵列雷达述评[J].雷达科学与技术,2004,2(3):136-141. 被引量:34
  • 2赵永波,张守宏.雷达低角跟踪环境下的最大似然波达方向估计方法[J].电子学报,2004,32(9):1520-1523. 被引量:30
  • 3陈伯孝,胡铁军,郑自良,王锋,张守宏.基于波瓣分裂的米波雷达低仰角测高方法及其应用[J].电子学报,2007,35(6):1021-1025. 被引量:24
  • 4贾永康,保铮.利用多普勒信息的波达方向最大似然估计方法[J].电子学报,1997,25(6):71-76. 被引量:17
  • 5Selva J. Computation of spectral and root MUSIC through real polynomial rooting. IEEE Trans Signal Process, 2005, 53:1923 -1917.
  • 6Haardt M, Zoltowski M D, Mathews C P, et al. 2D unitary ESPRIT for emcient 2D parameter estimation. In: Proc IEEE Int Conf Acoustics, Speech, and Signal Processing, Detroit, USA, 1995. 2096-2099.
  • 7Zoltowski M D, Haardt M, Mathews C P. Closed-form 2D angle estimation with rectangular array in element space or beamspace via unitary ESPRIT. IEEE Trans Signal Process, 1996, 44:316-328.
  • 8Jian C, Wang S, Lin L. Two-dimensional DOA estimation of coherent signals based on 2D unitary ESPRIT method. In: Proc IEEE Int Conf Signal Processing, Guilin, China, 2006. 16-20.
  • 9Wong K T, Zoltowski M D. Direction-finding with sparse rectangular dual-size spatial invariance array. IEEE Trans Aerospace Electr Syst, 1998, 34:1320-1335.
  • 10Wong K T, Zoltowski M D. Sparse array aperture extension with dual-size spatial invariances for ESPRIT-based direction finding. In: Proc IEEE 39th Midwest Symposium on Circuits and Systems, Ames, USA, 1996. 691-694.

共引文献26

同被引文献28

  • 1齐崇英,王永良,张永顺,陈辉.色噪声背景下相干信源DOA估计的空间差分平滑算法[J].电子学报,2005,33(7):1314-1318. 被引量:18
  • 2Haimovich A M, Blum R S, and Cimini L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116-129.
  • 3Li J and Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106-114.
  • 4Zhu Wei and Chen Bai-xiao. Altitude measurement based on terrain matching in VHF array radar[J]. Circuits, Systems, and Signal Processing, 2013, 32(2): 647-662.
  • 5Zhao Ying-jun, Wang Yong-liang, Li Rong-feng, et al.. Angle measurement for meter-wave radar based on mainlobemultipath jamming suppression[C]. IEEE llth International Conference on Signal Processing (ICSP), Beijing, China, 2012: 1746-1750.
  • 6Wang Wei, Wang Xian-peng, Li Xin, et al.. DOA estimation for monostatic MIMO radar based on unitary root-MUSIC[J]. International Journal of Electronics, 2013, 100(11): 1499-1509.
  • 7Zheng Gui-mei, Chen Bai-xiao, and Yang Ming-lei. Unitary ESPRIT algorithm for bistatic MIMO radar[J1. Electronic Letters, 2012, 48(3): 164-165.
  • 8Wang Wei, Wang Xian-peng, Ma Yue-hua, et al.. Conjugate unitary ESPRIT algorithm for bistatic MIMO radar[J]. IEICE Transactions on Electronics, 2013, E96-C(1): 124-126.
  • 9Jin Ming, Liao Gui-sheng, and Li Jun. Joint DOD and DOA estimation for bistatic MIMO radar[J]. Signal Processing,2009, 89(2): 244-251.
  • 10Boman K and Stoica P. Low angle estimation: models, methods, and bounds[J]. Digital Signal Processing, 2001, 11(1): 35-79.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部