期刊文献+

一种基于稀疏正则化的图像盲复原方法 被引量:1

Method for blind image restoration based on sparse regularization
下载PDF
导出
摘要 在图像盲反卷积的过程中,最主要的难点是缺少点扩散函数的足够信息而导致的病态问题.解决此问题可以通过对原始图像和点扩散函数同时进行正则化约束.为了在图像复原过程中得到惟一、稳定的解,并保证图像恢复结果的有效性,提出了一种具有尺度不变性和稀疏性的正则化函数,并通过两组对比实验例证了利用该函数的图像盲复原算法具有良好的鲁棒性和收敛稳定性. In the process of image blind deconvolution,the main obstacle is the lack of enough information about the point spread function(PSF),which leads to the ill-posed problem.To solve this problem,we can give regularization constraints on the original image and PSF simultaneously.In order to gain the stable and unique solution and guarantee the effectiveness of the resulting image restoration,this paper uses a scale invariant and sparse regularization function,and experiments are conducted to verify that our image blind recovery algorithm is robust and has stable convergence.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2012年第6期167-169,186,共4页 Journal of Xidian University
基金 国家自然科学青年基金资助项目(61100156) 中央高校基本科研业务费专项资金资助项目(K50511030007) 国家自然科学基金资助项目(61070143)
关键词 图像盲复原 稀疏性表示 解卷积 image blind restoration sparse representation deconvolution
  • 相关文献

参考文献13

  • 1Andrews H C, Hunt B R. Digital Image Restoration [M]. Englewood Cliffs: Prentice-Hall, 1976.
  • 2Banham M R, Katsaggelos A K. Digital Image Restoration [J].IEEE Signal Processing Magazine, 1997, 14(2) : 24-41.
  • 3Sullivan J A O, Blahut R E, Snyder D L. Information Theoretic Image Formation [J] IEEE Trans on Information Theory, 1998, 44(6): 2094-2123.
  • 4Kundur D, Hatzinakos D. Blind Image Deconvolution[J]. IEEE Signal Processing Magazine, 1996, 13(3) : 43-64.
  • 5Kundur D, Hatzinakos D: Blind Image Deeonvolution Revisited [J]. IEEE Signal Processing Magazine, 1996, 13(6) 61-63.
  • 6Karayiannis N B, Venetsanopoulos A N. Regularization Theory in Image: the Regularizing Operator Approach[J]. Optical Engineering, 1989, 28(7): 761-780.
  • 7Karaviannix N B. Regularization Theory in Image Restoration-the Stabilizing Functional Approach [J]. IEEE Trans on Acoustics, Speech and Signal Processing, 1990, 38(7): 1155-1179.
  • 8Elad Michael. Sparse and Redurdant Representations From Theory to Applications in Signal and Image Processing [M]. New York: Springer, 2010.
  • 9Krishnan D, Tay T, Fergus R. Blind Deconvolution Using a Normalized Sparsity Measuer [C]//IEEE Conference on Computer Vision and Pattern Recognition. Colorado: 1EEE, 2011: 233-240.
  • 10You Yuli, Kaveh M. A Regularization Approach to Joint Blur Identification and Image Restoration[J]. IEEE Trans on Information Theory, 1996, 5(3) : 416-428.

同被引文献14

  • 1赵知劲,解婷婷,李小平,赵治栋.一种小波域盲源分离算法[J].西安电子科技大学学报,2007,34(3):423-427. 被引量:3
  • 2张瑾,方勇.基于分块Contourlet变换的图像独立分量分析方法[J].电子与信息学报,2007,29(8):1813-1816. 被引量:8
  • 3Karray E, Loghmari M A, Naceur M S. Blind Source Separation of Hyperspectral Images in DCT-domain [C]// Advanced Satellite Multimedia Systems Conference and the 1 lth Signal Processing for Space Communications Workshop. Piscataway: IEEE, 2010: 381-388.
  • 4Bronstein A M, Bronstein M M, Zibulevsky M, et al. Sparse ICA for Blind Separation of Transmitted and Reflected Images [J]. International Journal of Imaging Systems and Technology, 2005, 15(1) : 84-91.
  • 5Maazaoui M, Abed Meraim K, Grenier Y. Adaptive Blind Source Separation with HRTFs Beamforming Preprocessing [C]//Sensor Array and Multichannel Signal Processing Workshop. Washington DC: IEEE, 2012: 269-272.
  • 6Kim Y, Nadar M S, Bilgin A. Wavelet-based Compressed Sensing Using a Gaussian Scale Mixture Model [J]. IEEE Transactions on Image Processing, 2012, 21(6): 3102-3108.
  • 7Fowler J E, Mun S, Tramel E W. Multiscale Block Compressed Sensing with Smoothed Projected Landweber Reconstruction [C]//Proceedings of the European Signal Processing Conference. Poland: European Signal Processing Conference. 2011: 564-568.
  • 8Yang Yang, Li Zuoli, Wang Xiuqin, et al. Noise Source Separation Based on Proceedings of Chinese Control and Decision Conference. Piscataway: IEEE, 2011.
  • 9Bobin J, Starek J L, Fadili J, et al. Sparsity and Morphological Diversity in Transactions on Image Processing, 2007, 16(1): 2662-2674. tile Blind Source Separation [C]// : 2236-2240. Blind Source Separation [J]. IEEE.
  • 10Guo K, Labate D. Optimally Sparse Multidimensional Representation Using Shearlets [J]. SIAM Journal on Mathematical Analysis, 2007, 39(1): 298-318.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部