期刊文献+

B~α空间和Q_K空间之间的加权Cesro算子 被引量:1

Extended Cesro Operators between B~α Spaces and Q_K Spaces
原文传递
导出
摘要 讨论了B^α空间和QK空间之间的加权Cesaro算子马的有界性,给出了B^a空间到QK空间的加权Cesaro算子Tg有界的充要条件.另外也给出了QK空间到B^a空间的加权Cesaro算子Tg有界的充要条件. This paper characterizes the boundedness of the extended Cesaro operators Tg between Ba spaces and QK spaces. Some equivalent conditions are given for Tg to be a bounded operator from Ba to QK. In addition, we also give sufficient and necessary conditions for Tg to be a bounded operator from QK to Ba.
作者 詹牡君
出处 《数学的实践与认识》 CSCD 北大核心 2012年第24期238-241,共4页 Mathematics in Practice and Theory
关键词 加权Cesro算子 B~α空间 Q_K空间 有界算子 Ba spaces QK spaces extended Cesro operators bounded operator
  • 相关文献

参考文献6

  • 1Essen M, Wulan H. On analytic and meromorphic functions and spaces of QK-type [J]. Illinois J Math, 2002, 46: 1233-1258.
  • 2Essen M, Wulan H and xiao J. Several function-theoretic characterizations of MSbius invariant QK spaces [J]. J. Funct.Anal., 2006, 230: 78-115.
  • 3Ye Shanli, Gao Jinshou. Extended Cesarooperators between different weighted Bloch-type spaces[J]. Acta.Math Sci: SerA., 2008, 28(2): 349-358. :.
  • 4Li S, Wulan H. Volterra type operators on QK spaces[J]. Taiwan Residents J. Math., 2010, 14(1): 195-211.
  • 5Zhu K. Bloch type spaces of analytic functions [J]: Rocky Mountain J Math, 1993, 23: 1143-1177.
  • 6Kotilainen M. On composition operators in QK type spaces [J]. J Funct Anal, 2007, 23(5): 103-112.

同被引文献6

  • 1王漱石,胡璋剑.Bloch型空间上的广义Cesàro算子[J].数学年刊(A辑),2005,26(5):613-624. 被引量:6
  • 2ESSEN M,WULAN H. On analytic and meromorphic functions and spaces of QK-type[J].Illinois J Math, 2002,46 (4) : 1233-1258.
  • 3ESSEN M,WULAN H, XIAO Jie. Several function-theoretic characterizations of Mobius invariant QK spaces[J]. J Funct Anal, 2006, 230(1):78-115.
  • 4LI Song-xiao,WULAN H. Volterra type operators on QK spaces[J]. Taiwan Residents J Math, 2010,14(1) :195-211.
  • 5XIAO Jie. Cesdro operators on Hardy, BMOA and Bloch spaces[J]. Arch Math, 1997, 68(5) :398-406.
  • 6KOTILAINEN M.On composition operators in QK type spaees[J]. J Function Spaces Appl,2007, 5(2):103-122.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部