期刊文献+

沃利斯的《无穷算术》研究

Study in Wallis's Arithmetica Infinitorum
原文传递
导出
摘要 《无穷算术》是微积分发展中非常关键的一步,是牛顿创立微积分的重要思想来源.简要介绍了沃利斯的发现过程,并对其思想方法进行了深入分析.另外,还指出了该部著作在当今数学教学中的重要意义. Arithmetica Infinitorum was a critical step in the development of caculus.It was one of the most important sources of Newon's caculus.This paper describes Wallis's discovering process , analysizes his thoughts and methods. Besides, we point its roles in the mathematical education.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第24期280-286,共7页 Mathematics in Practice and Theory
关键词 沃利斯 无穷算术 不完全归纳 wallis arithmetica infinitorum induction
  • 相关文献

参考文献10

  • 1克莱因M著,朱学贤等译.古今数学思想(第二册)[M].上海:上海科学技术出版社,2002,61.
  • 2Scott J F. The mathematics work of John Wallis[M]. London:Taylor and Francis Ltd , 1938.
  • 3程小红.17世纪的算法倾向:wallis的插值法[J].首都师范大学学报,2002(4):366-369.
  • 4David Dennis. Intervals and the origins of caculus[J]. Reliable Computing, 1998(4): 191-197.
  • 5Katherine Hill. Neither ancient nor modern:Wallis and Barrow on the composition of continua.part one: mathematical styles and the composition of continua[J]. Notes Rec R Soc Lond, 1996, 50(2): 165-178.
  • 6Hobbes Thomas, Six lessons to the professors of mathematiques, one of geometry, the other of astronomy: in the chaires set up by Sir Henry Savile in the University of Oxford[M]. London, 1656.
  • 7Andersen, Kirsti. Cavalieri's method of indivisibles[J]. Archive for the History of Exact Sciences , 1985(31): 291-367.
  • 8克莱因M著,李宏魁译.数学:确定性的丧失[M].长沙:湖南科学技术出版社,2004:129-131.
  • 9Percy T Nunn. The arithmetic of infinites. A school introduction to the integral calculus[J]. The Mathematical Gazette, 1911, 5(90): 377-386.
  • 10Whiteside D T. Newton's discovery of the general binomial theorem[J]. The Mathematical Gazette, 1961, 45(353): 175-180.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部