期刊文献+

周期性两相层状带隙材料优化模型 被引量:1

The optimaztion model of two-phase periodic layered band-gap material
下载PDF
导出
摘要 研究并建立了一种在给定频段具有带隙性质的周期性两相层状材料的优化设计模型。首先基于层状材料波传播问题的解析解,得到了波数余弦函数与层状材料微结构参数间的解析表达式。进而分析了波数余弦函数与衰减系数的关系,提出了以波数余弦函数的平方在给定频段的积分为弹性波带隙特性的描述指标,以最大化该指标实现在给定频段使弹性波衰减系数最大化的思想,建立了设计在给定频段具有最优带隙性质的周期性两相层状材料优化提法和求解方法。最后,以几个典型的设计算例为对象,得到了给定微结构尺度约束下在特定频段具有最优带隙性质的材料微结构参数,讨论了材料微结构尺寸对最优材料结构参数的影响,以及最优结构参数对材料带隙性质的鲁棒性,验证了本文优化模型的有效性。 A simple design optimization formulation is investigated and developed for two-phase periodic layered material with band gaps in specified frequency ranges. First, based on the analytical solution of elastic wave propagation in periodic layered material, an analytical solution of cosine function of wave number and the configurations of the microstructure in periodic layered material is obtained. Next, the relation between cosine function of wave number and attenuate coefficient is analyzed, and the band gap characteristic is descripted as an index which is integration of cosine function of wave number in given frequency ranges, such that the idea of maximizing attenuate coefficient within given frequency ranges can be carried out by maximizing this index, then the optimization formulation and the solving strategy of designing two-phase periodic layered material with band gaps in specified frequency ranges are formula- ted. Finally, the effectiveness of the optimization design model is demonstrated by several design exam- pies,optimal configurations of the material subject to certain scale constraints of the microstructure are obtained,and both the influences of scale constraints on the optimal configurations and the robustness of the optimal configurations on the band gap characteristics are discussed.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2012年第6期811-818,共8页 Chinese Journal of Computational Mechanics
基金 国家重点基础发展(973)计划(2011CB610304) 国家自然科学基金(11172052) 高等学校博士学科点研究基金(20090041110023)资助项目
关键词 材料设计 弹性波带隙 优化模型 约束函数 鲁棒性 material design elastic band gap optimization model constraint function robustness
  • 相关文献

参考文献11

二级参考文献131

共引文献138

同被引文献11

  • 1温激鸿,王刚,郁殿龙,赵宏刚,刘耀宗,温熙森.声子晶体振动带隙及减振特性研究[J].中国科学(E辑),2007,37(9):1126-1139. 被引量:52
  • 2钟万勰.一个多用途的结构分析程序JIGFEX(一)[J].大连工学院学报,1977,17(3):19-42.
  • 3钟万勰.一个多用途的结构分析程序JIGFEX(二)[J].大连工学院学报,1977,17(4):14-35.
  • 4Lin Z Y,Zhang X X, Mao Y,et al. Locally resonant sonic materials[J]. Science, 2000,289 : 1734-1736.
  • 5Sheng P, Zhang X X, Liu Z, et al. Locally resonant sonic materials [J]. Physica B, 2003,338 (1-4) : 201- 205.
  • 6Yu D L,Wen J H,Zhao H G, et al. Vibration reduc- tion by using the idea of phononic crystals in a pipe- conveying fluid[J]. Journal of Sound and Vibration, 2008,318(1-2) : 193-205. (in Chinese)).
  • 7Zhang S W, Wu J H, Hu Z P. Low-frequency locally resonant band-gaps in phononic crystal plates withperiodic spiral resonators [J]. Journal of Applied Physics, 2013,113 (16) :1-8. (in Chinese) ).
  • 8Lu X,Lin J H,Zhong W X. Subspace iteration meth- od in multi-level substructure systemsl-J]. Computers and Structures, 1989,33(2) : 459-462.
  • 9Sigmund O,Jensen J S. Systematic design of phononic band gap materials and structures by topology optimi- zation[J]. Philosophical Transactions of the Royal Society A ,2003,361 : 1001-1019.
  • 10宋卓斐,王自东,王艳林,王强松.一维杆状声子晶体的带隙特性[J].振动与冲击,2010,29(2):145-148. 被引量:10

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部