期刊文献+

基于对比度分析及矢量匹配的混合高斯模型

Gaussian mixture background model based on contrast analysis and vector matching
下载PDF
导出
摘要 针对经典的混合高斯背景建模算法鲁棒性不强且背景建模实时性不足的特点,提出了一种改进方法。首先将图像矢量化,即将图像分成若干块,每一块图像作为一个矢量进行整体建模;然后对于每一个图像块基于其反差描述元与K个高斯模型进行匹配。实验结果表明,改进的算法降低了环境光变化和背景波动等因素的干扰且建模速度较快。 This paper introduces an improved methods on Gaussian mixture background model to enhance its robustness and shorten the modeling time. It divides an image into blocks at first, and build overall modeling for each block as a vector. Then matching every vector to K Gaussian models based on its descriptor. Experimental resuhs verify that the improved model reduces the interference as ambient light change, background fluctuations as well as time consumption.
出处 《微型机与应用》 2012年第24期45-47,共3页 Microcomputer & Its Applications
基金 江苏省科技支撑计划社会发展项目(BE2011655)
关键词 对比度分析 混合高斯模型 背景建模 反差描述元 矢量匹配 contrast analysis Gaussian mixture model background modeling contrast descriptor vector matching
  • 相关文献

参考文献5

  • 1FRIEDMAN N, RUSSELL S. Image segmentation in video sequences: A probabilistie approach[C]. Proceedings of the 13th Annual Conference on Uncerlaintv in Artificial Intelligence, 1997 : 175-181.
  • 2STAUFFER C, GRIMSON W. Adaptive background mixture models for read time tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1999 : 246-252.
  • 3Sun Tong, NEUVO Y. Detail-preserving median based filters in image processing[J]. Pattern Recognition Letters,1994, 15(4) :341-347.
  • 4HARVILLE M. A framework for high-level feedback to adaptive, per-pixel, mixture-of-Gaussian background models[C]. Proceedings of European Conference on Computer Vision. 2002:543-560.
  • 5LEE D S. Effective gaussian mixture learning for video background subtraction[J]. IEEE Transactions on Pattern Anal. Math. Intell. 2005,27(5):827-832.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部