期刊文献+

d-元广义分圆序列的线性复杂度及自相关函数性质分析

Analysis of the Linear Complexity and the Autocorrelation of a Class of d-ary Generalized Cyclotomic Sequence
下载PDF
导出
摘要 该文推广了Liu Fang等人(2010)给出的周期为p n,p为奇素数,n为正整数的广义分圆序列的构造,并确定了新构造序列的线性复杂度和自相关函数值的分布。结果表明,推广的构造保持了原构造的高线性复杂度等伪随机特性。由于取值更灵活,较之原构造新构造序列的数量要大得多。 The construction of the generalized cyclotomic sequence with length pn for a prime p and a positive integer n given by Liu Fang et al. (2010) is generalized in this paper. The linear complexity and the autocorrelation values of the new defined sequences are also determined. The results show that the new defined sequences keep the pseudo-random properties of the original sequence, that is, the high linear complexity and undesirable autocorrelation properties. Owing to the flexible ways to assign values to different generalized cyclotomic classes, the new construction contains more classes of generalized cyclotomic sequences when it is compared with the original one.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第12期2881-2884,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61102093) 福建省高校服务海西建设重点项目(基于数学的信息化技术研究) 福建省自然科学基金(2010J01319)资助课题
关键词 网络安全 广义分圆 线性复杂度 自相关 Network security Generalized cyclotomy Linear complexity Autocorrelation
  • 相关文献

参考文献10

  • 1Cusick T, Ding C, and Renvall A. Stream Ciphers and Number Theory[M]. North-Holland Mathematical Library 55, 1998: 198-212.
  • 2Golomb S W and Gong G. Signal Design for Good Correlation: For Wireless Communications, Cryptography and Radar Applications[M]. Cambridge: UK, Cambridge University Press, 2005: 174-175.
  • 3Ding C, Hellseth T, and Shah W. On the linear complexity of Legendre sequences[J]. IEEE Transactions on In]ormation Theory, 1998, 44(3): 1276-1278.
  • 4Kim Y J, Jin S Y, and Song H Y. Linear complexity and Autocorrelation of prime cube sequences[C]. 2007, LNCS 4851: 188-197.
  • 5Yah T, Li S, and Xiao G. On the linear complexity of generalized cyclotomic sequences with the period pm[j]. Applied Mathematics Letters, 2008, (21): 87-193.
  • 6Liu F, Peng D Y, Tang X H, et al.. On the autocorrelation and the linear complexity of q-Ary prime n-square sequence [C]. SETA 2010, LNCS 6338: 139-150.
  • 7Ke P H, Zhang J, and Zhang S Y. On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length 2pm [OL]. Designs Codes and Cryptography, DOI. 10.1007/s10623-012-9610-9, 2012.
  • 8Ke P H and Zhang S Y. New classes of quaternary cyclotomic sequence of length 2pm with high linear complexity[J]. Information Processing Letters, 2012, 12(16): 646-650.
  • 9Edemskiy V. About computation of the linear complexity of generalized cyclotomic Sequences with period pn+l[j]. Designs Codes and Cryptography, 2011, 61(3): 251-260.
  • 10Burton D M. Elementary Number Theory [M]. Maidenhead: UK, McGraw-Hill Education Press, 1998: 92-105.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部