期刊文献+

一种基于模式熵的残缺指纹识别算法 被引量:8

An Incomplete Fingerprint Recognition Algorithm Based on Pattern Entropy
下载PDF
导出
摘要 该文提出了一种新的残缺指纹识别算法,在应用融合特征的同时,利用模式熵进行相似性度量。由于残缺指纹的特有性质,识别结果主要由两方面决定,即提取包含足够信息的特征以及有效的相似性度量方式。对于第1个问题,该文将细节点和方向场特征进行有效融合,来得到更全面的信息,并提高尺度和旋转不变性。对于第2个问题,通过引入模式熵度量两个特征点集之间的一致性,并以此来消除误匹配。在指纹库中进行的大量实验以及同其他方法的充分比较表明,该文提出的算法在准确率和速度上都取得了较优的性能。 A novel algorithm for incomplete fingerprint recognition is proposed in this paper using fusion features and pattern entropy based similarity measure. Because of incomplete fingerprint's unique characteristic of information loss, the recognition performance is mainly restricted by two critical problems: extracting features containing sufficient information and measuring similarity more effectively. For the first problem, minutiae and orientation field features are fused to get more comprehensive information and to improve the scale and rotation invariability. For the second, the pattern entropy is introduced to measure the coherency of correspondences between two feature sets to eliminate false match. The extensive experiments are done and compared with existing method on fingerprint databases and made thorough comparisons. Experimental results show that the proposed scheme has more efficient ability on separating genuine and impostor pairs and performs well in both accuracy and speed.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第12期3040-3045,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60872148 61143008)资助课题
关键词 模式识别 残缺指纹 模式熵 相似性度量 特征融合 Pattern recognition Incomplete fingerprint Pattern entropy Similarity measurement Feature fusion
  • 相关文献

参考文献18

  • 1Zhao Qi-jun and Jain A K. Model based separation of overlapping latent fingerprints[J]. IEEE Transactions onInformation Forensics and Security, 2012, 7(3): 904-918.
  • 2王崇文,李见为,陈为民.基于HMM和SVM的指纹分类方法[J].电子与信息学报,2003,25(11):1488-1493. 被引量:8
  • 3Tico M and Kuosmanen P. Fingerprint matching incorporating Transactions 6(2): 338-345 ridge features with minutia[J] on Information Forensics and Security IEEE 2011,6(2): 338-345.
  • 4Oliveira M A and Leite N J Leite. A multiscale directional operator and morphological tools for reconnecting broken ridges in fingerprint images[J]. Pattern Recognition, 2008, 41(1): 367-377.
  • 5Mieloch K, Munk A, and Mihailescu P. Improved fingerprint image segmentation and reconstruction of low quality areas[C]. 2010 International Conference of Pattern Recognition(ICPR), Istanbul, Aug. 23-26, 2010: 1241-1244.
  • 6Jea T Y and Govindaraju V. A minutia-based partial fingerprint recognition system[J]. Pattern Recognition, 2005, 38(10): 1672-1684.
  • 7Ito Koichi, Aoki Takafumi, Nakajima Hiroshi, et al.. A fingerprint recognition algorithm using phase-based image matching for low-quality fingerprints[C]. 2005 International Conference on Image Processing(ICIP), Sendai, Sept. 11-14, 2005: II-33-6.
  • 8Win Z M and Sein M M. Fingerprint recognition system for low quality images[C]. 2011 Proceedings of SICE Annual Conference(SICE), Tokyo, Sept. 13-18, 2011: 1133-1137.
  • 9Feng J. Combining mitiutiae descriptors for fingerprint matching[J]. Pattern Recognition, 2008, 41(1): 342-352.
  • 10Feng Jian-jiang and Jain A K. Fingerprint reconstruction: from minutiae to phase[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 209-223.

二级参考文献1

  • 1V.N.Vapnik著 张学工译.统计学习理论的本质[M].清华大学出版社,2000.第2章.

共引文献7

同被引文献49

  • 1徐寅林,宁新宝,陈颖,王俊.模式熵与高频心电图信号不规则性的动态分析[J].科学通报,2004,49(13):1317-1321. 被引量:5
  • 2Yoon So Weon,Feng Jian-jian, and Jian A K. Latent fingerprint enhancement via robuust field estimation [C].2011 Intemnational Joint Conference On Biometrics [IJCB],Washtington,D.C.,Oet.10- 13,2011:1-8.
  • 3A.K.Jain,S.Prabhakar, L.Hong and et al.Fiherbank-Based Finger- printMatching.IEEE Transactions on Image Processing,2000,9 (5): 846-859.
  • 4YOON S W,FENG J J,JIAN A K.Latent fingerprint en-hancement via robuust field estimation [C]//2011 Internna-tional Joint Conference On Biometrics.2011:1-8.
  • 5JAIN A K,PRABHAKA R S,HONG L,et al.Fiherbank-Based Fingerprint Matching[J].IEEE Transactions on Im-age Processing,2000,9(5):846-859.
  • 6CHIKKERUR S,GOVINDARAJU V,CARTWRIGHT A N.Fingerprint image enhancement using STFT analy-sis [C]//In:Proc.of 3rd International Conference on Ad-vances in Pattern Recognition,Bath,UK.2005:20-29.
  • 7FAN Dong- jin, YU Peng, DU Peng, et al. A novel probabilistic model based fingerprint recognition algorithm [J]. Procedia Engineering, 2012, 46(29) : 201 -206.
  • 8CAO Kai, PANG Liao- jun, LIANG Ji -rain, et al. Fingerprint classification by a hierarchical classifier J]. Pattern Recognition, 2012, 46 (12) : 3186 -3197.
  • 9ILI Jing, CAO Jian, LU Kai - xuan. Aimprove the two - phase test samples representation method for palmprint recognition [ J ]. Optik - Interna- tional Journal for Light and Electron Optics, 2013, 124(24) : 6651 -6656.
  • 10Stjepan Oreski, Goran Oreski. Genetic algorithm - based heuristic for feature selection in credit risk assessment [ J]. Expert Systems with Appli- cations, 2014, 41(4): 2052-2064.

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部