期刊文献+

条形微裂纹对16MnR钢解理断裂韧性的影响 被引量:2

Effect of Strip Micro-crakes on Cleavage Fracture Toughness of 16MnR Steel
下载PDF
导出
摘要 在常温下对热轧16MnR低合金钢缺口试样进行了不同预加载荷的正反弯曲试验,以在缺口前引入不同尺寸的条形微裂纹,然后通过高温回火消除残余应力和加工硬化,随后在—196℃下进行4点弯曲断裂试验,研究了条形微裂纹尺寸对缺口试样解理断裂韧性的影响。结果表明:当预载荷比(P_0/P_(gy))小于0.861时,预载荷对解理断裂韧性影响较小;当预载荷比大于0.861后,条形缺陷在外加载荷作用下撕裂而形成的条形微裂纹,并且随预载荷比的增大条形微裂纹数量增多、尺寸增大、分布区域扩大,断裂载荷、断裂吸收功随预载荷比的增加而迅速下降;条形微裂纹所引起的局部高应力应变范围增大,使解理起裂源分布范围增大,也造成了缺口韧性参数P_1和W数值的分散。 Positive and negative bending experiment for notched specimens of low alloy hot rolled steel 16MnR with different pre-loads were carried out at room temperature to introduce strip micro-crakes with different dimensions in front of notch. And then the residual stress and work hardening were eliminated through high temperature tempering. Four points bending fracture experiment was carried out at --196 ~C. And effect of stripe micro-crake dimension on cleavage fracture toughness of notched specimens was investigated. Results show that when the pre-load ratio Po/Pgy^O. 861, the pre-load had little effect on the cleavage fracture notch toughness; when P0/Pgy^0, 861, the strip defect was torn and formed the micro cracks under applied loads. With the increase of P0/ Pgy, the number of strip micro-cracks increased, and the size as well as the distribution region was enlarged, too. Fracture load and fracture absorbed energy rapidly decreased with pre-load ratio increased. The increase of high stress-strain region caused by the strip micro-cracks made the distribution of cleavage initiation increase, as the result, numeric values of material notch toughness Pf and W were discreted.
出处 《机械工程材料》 CAS CSCD 北大核心 2012年第12期28-32,共5页 Materials For Mechanical Engineering
基金 国家自然科学基金资助项目(50432020)
关键词 16MNR钢 缺口试样 条形裂纹 解理断裂 16MnR steel notched specimeN strip crake cleavage fracture
  • 相关文献

参考文献10

  • 1STROH A N. The formation of cracks as a result of plastic flow[J]. Proceedings of the Royal Society: A, 1954,223: 404- 414.
  • 2COTTRELL A H. Theory of brittle fracture in steel and similar metals[J]. Trans Metallurgical Soc AIME, 1958,212 :192- 203.
  • 3SMITH E. Proceedings of the conference on the physical basis of fracture[J]. Physics and Physics Society, 1966,30 : 36-46.
  • 4RITCHIE R O, KNOTT J F, RICE J R. On the relationship between critical tensile stress and fracture toughness in mild steel[J]. Physics of Solids, 1973,21(3) : 395-410.
  • 5CURRY D A,KNOTT J F. Effect of microstructure on cleav- age fracture stress in steel[J]. Met Sci, 1977,15: 511-514.
  • 6BOWEN P, DRUCE S G, KNOTT J F. Micromechanical mod- elling of fracture toughness[J]. Acta Metall, 1987, 35: 1735- 746.
  • 7WANG G Z,CHEN J H. Cleavage fracture criterion of low al- loy steel and weld metal in notched specimens[J]. Inter J Fracture, 1998,89 : 269-284.
  • 8WANG G Z, LIU Y G, CHEN J H. Investigation of cleavage fracture initiation in notched specimen of a C-Mn steel with carbides and inclusions[J]. Mater Sci Eng, 2004, A369 : 181- 185.
  • 9刘彦国,李震,孙先明.16MnR钢缺口试样解理断裂行为研究[J].力学与实践,2011,33(5):21-27. 被引量:1
  • 10王国珍,王玉良,轩福贞,涂善东,王正东.加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响[J].金属学报,2009,45(7):866-872. 被引量:8

二级参考文献26

  • 1Couque H, Asaro R J, Duffy J, Lee S H. Metall Trans, 1988; 19A: 2179.
  • 2Zurek A K, Follansbee P S, Hack J. Metall Trans, 1990; 21A: 431.
  • 3Lee S, Rhyu J W, Cho K M, Duffy J. Metall Trans, 1993; 24A: 901.
  • 4Venkert A, Guduru P R, Ravichandran G. Metall Mater Trans, 2000; 31A: 1147.
  • 5Wang G Z, Ren X C, Chen J H. Metall Mater Trans, 2004; 35A: 1765.
  • 6Wang G Z, Liu Y G, Chen J H. Mater Sci Eng, 2004; A369:181.
  • 7Mendiratta M G, Goetz R L, Dimiduk D M. Metall Mater Trans, 1996; 27A: 3903.
  • 8Wang G Z, Chen J H. Int J Fract, 1998; 89:269.
  • 9Chen J H, Wang G Z, Yan C, Ma H, Zhu L. Int J Fract, 1997; 83:105.
  • 10Wang G Z, Wang H J, Chen J H. Fatigue Fract Eng Mater Struct, 1999; 22:849.

共引文献7

同被引文献7

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部