期刊文献+

蛋白发泡法制备泡沫陶瓷固化工艺研究 被引量:2

Study on the Consolidation Process of Protein Foaming in the Preparation of Ceramic Foams
下载PDF
导出
摘要 选用蛋清蛋白作为发泡剂,采用蛋白发泡法制备了高孔隙率的泡沫氮化硅陶瓷.设计了三种不同固化工艺:常压固化、恒压固化和高压固化,固化气压依次升高,研究了固化气压对泡沫陶瓷开孔率、孔隙形貌和孔径分布的影响.其中,恒压固化制品的平均孔径和开孔率最高,分别为210μm和78.6%,且孔径分布比较均匀,常压固化次之,高压固化制品开孔率和平均孔径最低.常压和恒压固化制品为椭球形孔洞,有一定的排列取向,而高压固化制品多为规则的球形孔.随着固化气压的升高,制品孔壁厚度增加,高压固化制品的孔壁厚度最高,其压缩强度接近50 MPa. High porosity Si3N4 ceramic foams were fabricated by protein foaming method using egg white protein as foam agents. Atmosphere-, constant- and high-pressure consolidation processes were tested to prepare ceramic foams. The effects of air pressure on cellular structure, open porosity and pore size distribution of the as-prepared ceramic foams were investigated. The results showed that ceramic foams with average pore size and porosity of 210 μm and 78.6% was obtained by constant-pressure consolidation, which are the highest values among all the three groups. Moreover, SEM reveals that ceramic foams with uniformly ellipsoidal pores are produced by atmosphere- and constant-pressure consolidation processes, while ceramic foams with regular sphere pores are produced by high-pressure consolidation. The walls' thickness of the pores increase with the increase of air pressure during consolidation process. As a result, the high-pressure consolidation process yields the highest compressive strength (nearly 50 MPa) of ceramic foams.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2012年第12期1331-1335,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(E020301)~~
关键词 蛋白发泡 泡沫陶瓷 氮化硅 固化工艺 protein foaming ceramic foams Si3N4 consolidation
  • 相关文献

参考文献23

  • 1Montanaro L, Jorand Y, Fantozzib G et al. Ceramic foams by powder processing. J. Eur. Ceram. Soc., 1988, 18(9): 1339-1350.
  • 2Tian H, Ma Q S. Effects of exterior gas pressure on the structure and properties of highly porous SiOC ceramics derived from sili- cone resin. Mater. Len., 2012, 66(1): 13-15.
  • 3Tian H, Ma Q S. Effect of heat rate on the structure and properties of SiOC ceramic foams derived from silicone resin. Ceram. Int., 2012, 38(3): 2101-2104.
  • 4Wang, H, Li X D, Hong, L Y, et al. Preparation of phenolic resin derived 3-D ordered macroporous carbon. J. Porous. Mat., 2006, 13(2): 115-121.
  • 5Kawai C, Yamakawa A. Effect of porosity and microstructure on the strength of Si3Na: designed microstructure for high strength high thermal shock resistance and facile machining. J. Am. Ceram. Soc., 1997, 80(10): 2705-2708.
  • 6Chen Q Z, Boccaccini A R, Zhang H.B, et al. Improved mechani- cal reliability of bone tissue engineering scaffolds by electrospray- ing. J. Am. Ceram. Soc., 2006, 89(5): 1534-1539.
  • 7He X, Zhou X C: Su B. 3D interconnective porous alumina ceramics via direct protein foaming. Mater. Lett., 2009, 83(11): 830-832.
  • 8Peng H X, Fan Z, Evants J R G, et al. Microstructure of ceramicfoams. J. Eur. Ceram. Soc., 2000, 20(7): 807-813.
  • 9Yin L., Peng H X, Dhara S, et al. Natural additives in protein co- agulation casting process for improved rrficrostructural controlla- bility of cellular ceramics. Compos. Part B, 2009, 40(7): 638-644.
  • 10Gregorov: E, Pabst W, ivcov:i Z, et al. Porous alumina ceramics prepared with wheat flour. J. Eur. Ceram. Soc., 2010, 30(14): 2871-2880.

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部