期刊文献+

嵌入分形频率选择表面的低频超薄吸波层的设计(英文) 被引量:1

Design of Ultra-thin Absorbers Embedded with Fractal Frequency Selective Surface in Low Frequency
下载PDF
导出
摘要 研究了频率选择表面对超薄多层微波吸波体在低频(L和S频段)吸波性能的影响.分别采用硫化工艺和激光刻蚀方法制备出传统的微波吸收材料(MAM)——橡胶板和FSS层,然后利用它们合成多层微波吸波体(MMA)样品,在NRL弓形法测试系统中测量该样品的反射率.发现随着FSS层在传统吸波材料层中的引入,确实可以增强整个多层吸波体在低频段的吸波性能.实验结果显示,当两个FSS层在多层吸波体中适当排列时,可以在1 GHz得到一个–3.49 dB的反射率峰值,最大反射峰值可达–9.35 dB,这时的样品厚度是1.8 mm.本研究为吸波材料的吸波性能向低频段的拓展提供了一种有效的方法. Ultra-thin absorbers at low frequency bands composed of two traditional microwave absorbing material (MAM) rubber plates and fractal frequency selective surface (FSS) were designed. The absorbing properties of composite absorbers of different arrangement of MAM and FSS were investigated in detail in L and S bands. Two traditional MAM rubber plates and fractal FSS layers were fabricated for producing the multilayer microwave absorber (MMA) samples by using vulcanizing and laser etching methods, respectively. The reflectivity of MMA samples were measured by the NRL-arch testing systems. It is found that introducing FSS layers into the traditional MAM plates indeed could strengthen the absorbing properties of MMA samples at low frequencies. Moreover, after proposing double FSS layers in a proper arrangement, the MMA sample with the thickness of only 1.8 mm could obtain peak value of -9.35 dB and the reflectivity value of -3.49 dB at 1 GHz, respectively. As a result, the introduction of fractal FSS layers could provide another way to develop the absorbing properties at low frequency bands.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2012年第12期1336-1340,共5页 Journal of Inorganic Materials
基金 Specialized Research Fund for the Doctoral Program of Higher Education of China(20090142110004)
关键词 频率选择表面 分形 微波吸收材料 低频 frequency selective surface fractal microwave absorbing material low frequencies
  • 相关文献

参考文献11

  • 1Yang J, Shen Z. A thin and broadband absorber using double- square loops. 1EEE Antennas Wireless Propag. Lett., 2007, 6: 388-391.
  • 2Tang W, Shen Z. Simple design of thin and wideband circuit ana- logue absorber. Electron. Lett., 2007, 43(12): 689-691.
  • 3Li Y Q, Zhang H, Hu Y Q, et al. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. 1EEE Antennas Wireless Propag. Lett., 2008, 7: 473-476.
  • 4Chen H Y, Zhang H B, Deng L J. Design of an ultra-thin magnetic- type radar absorber embedded with FSS. IEEE Antennas Wireless Propag. Lett., 2010, 9: 899-901.
  • 5Munk B A. Frequency Selective Surface: Theory and Design. New York, U.S.A: Wiley, 2000.
  • 6Vinoy K J, Jha R M. Radar Absorbing Materials. Norwell, MA U.S.A: Kluwer Academic, 1996.
  • 7Sha Y N, Jose K A, Neo C P. Experimental investigations of micro- wave absorber with FSS embedded in carbon fiber composites. Microw. Opt. Techn. Lett., 2002, 32(4): 245-249.
  • 8Xie W, Cheng H F, Chu Z Y. Effect of FSS on microwave absorb- ing properties of hollow-porous carbon fiber composites. Materials and Design, 2009, 30(4)" 1201 - 1204.
  • 9Zou Y H, Jiang L Y, Wen S C. Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials. Appl. Phys. Lett., 2008, 93: 261115-1-3.
  • 10Liao Z Q, Wang T, Nie Y, et al. Numerical study on a designablelinear-resonant multiband single-layer fractal frequency-selective surface. Phys. Rev. E, 2010, 82(1): 016603-1-6.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部