期刊文献+

B-N链对锯齿型石墨烯纳米带电子结构的影响 被引量:2

Effects of B-N Chain Doping on Electronic Structure of Zigzag Graphene Nanoribbons
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理计算方法,研究了边缘对称和反对称的锯齿型石墨烯纳米带的电子结构,考察了B-N链掺在不同位置时的影响。研究结果表明:B-N原子链有向边缘迁移的现象,并且其掺杂在石墨烯纳米带中央时对体系电子结构的改变很小,而掺杂在边缘时会使体系在费米能级附近的能带结构发生显著的变化。边缘被B-N链取代的石墨烯纳米带的能隙被打开,并产生了明显的自旋非简并现象。这些现象的出现归因于掺杂体系中边缘电子态的重新分布。 Using first-principles based on density functional theory, the electronic structures of B-N chain doped zigzag graphene nanoribbons (ZGNRs) were studied. The symmetry of ZGNRs and the position of B-N chain were considered. The results show that the B-N chain is apt to be doped at the edge of ZGNRs. There are remarkable effects on the electronic structure for the systems with the doped B-N chain at the edge of ZGNRs. Moreover, the opened band gap and spin nondegenerate phenomenon can be observed on the ZGNRs with B-N chain doped at the edge rather than other positions. This may be attributed to the redistribution of edge electronic states on doped ZGNRs.
作者 王辉 徐慧
出处 《材料导报》 EI CAS CSCD 北大核心 2012年第24期140-144,共5页 Materials Reports
基金 高等学校博士点专项科研基金项目(20070533075) 国防科工委基础科研项目(ZNDX2008195) 湖南省科技计划资助项目(2009FJ3004)
关键词 锯齿型石墨烯纳米带 B-N链掺杂 电子结构 zigzag graphene nanoribbon, B-N chain, doping, electronic structure
  • 相关文献

参考文献3

  • 1Cai Jinming,Ruffieux P,Jaafar R. Atomically precise bottom-up fabrication of graphene nanoribbons[J].Nature,2010,(7305):470.
  • 2Pearson J D,Zikry M A,Wahl K. Computational design of thin-film nanocomposite coatings for optimized stress and velocity accommodation response[J].Wear,2009,(58):1137.
  • 3刘欣欣,王小平,王丽军,李怀辉,梅翠玉,刘晓菲,杨灿,梁鹏飞,卢炎聪,江振兴,赵凯麟,刘仁杰.石墨烯的研究进展[J].材料导报,2011,25(23):92-97. 被引量:21

二级参考文献13

  • 1Changgu Lee, Wei Xiaoding, Jeffrey W Kysar, et al. Mea- surement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008,5887 (321) : 358.
  • 2Claire Berger, Song Zhimin, Li Xuebin, et al. Electron con- finement and coherence in patterned epitaxial graphene [J]. Science, 2006,312:1191.
  • 3Pandey D, Reifenberger R, Piner R. Scanning probe micros- copy study of exfoliated oxidized graphene sheets [ J]. Surf Sci, 2008,602 :1607.
  • 4Pan Yi, Zhang Haigang, Shi Dongxia, et al. Highly or- dered, millimeter scale, continuous, single-crystalline gra- phene monolayer formed on Ru(0001)[J]. Adv Mater, 2009,21:2777.
  • 5Chen W F, Yan L F, Bangal P R, et al. Preparation of gra- phene by the rapid andmild thermal reduction of grapheme oxide induced by microwaves[J]. Carbon, 2010,48:1146.
  • 6V Sridhar, Jin-Han Jeon, II-Kwon Oh. Synthesis of gra- phene nanosheets using eeo-friendly chemicals and micro- wave radiation[J]. Carbon, 2010,48 : 2953.
  • 7Laura J Cote, Rodolfo Cruz-Silva, Huang Jiaxing. Flash re- duction and patterning of graphite oxide and its polymer composite[J]. J Am Chem Soc,2009,131:11027.
  • 8Indranil Lahiri, Ved Prakash Verma, Wonbong Choi. An all-graphene based transparent and flexible field emission de- viee[J]. Carbon, 2011,49 : 1614.
  • 9Hubert B Heersche, Pablo Jarillo-Herrero, Jeroen B Oostin- ga, et al. Bipolar supercurrent in graphene[J]. Nature, 2007,446 : 56.
  • 10Ataca C, Akturk E, Ciraci S. Hydrogen storage of calci- umatoms adsorbed on graphene: First-principles plane wave calculations[J]. Phys Rev B, 2009,79 (041406) : 1.

共引文献20

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部